

REPÚBLICA DE ANGOLA
MINISTÉRIO DA SAÚDE
INSTITUTO NACIONAL DE INVESTIGAÇÃO EM SAÚDE
COMITÉ DE ÉTICA

CONSENTIMENTO INFORMADO, LIVRE E ESCLARECIDO PARA PARTICIPAÇÃO EM INVESTIGAÇÃO
de acordo com a Declaração de Helsínquia¹ e a Convenção de Oviedo²

Por favor, leia com atenção a seguinte informação. Se achar que algo está incorrecto ou que não está claro, não hesite em solicitar mais informações. Se concorda com a proposta que lhe foi feita, queira assinar este documento.

Título do estudo:

PREVALENCIA DO POLIMORFISMO DO GEN APOE (I9qI3.32) EM HIPERTENSOS. HUAMBO.
2020- 2023

Enquadramento:

O estudo enquadra-se no âmbito do doutoramento.

Explicação do estudo:

Estas sendo convidado para participar de um estudo sobre o polimorfismo de Apoproteína E e a hipertensão no Huambo. Os avanços na área da saúde em termos de prognóstico e tomada de decisão ocorrem através de estudos como estes, por isso a sua participação é importante. O objectivo deste estudo é saber se existe uma relação genética entre os desequilíbrios da Apolipoproteína E e a hipertensão arterial e correlacioná-las com as variáveis sócio demográficas, estilo de vida. Caso aceite o convite será necessário ser avaliado por uma ou um profissional de saúde da equipe. Sempre que quiseres poderás ter todas as informações e o seu nome não aparecerá a qualquer momento no estudo, pois identificar-te-ão com um número.

Eu _____, li ou ouvi o esclarecimento acima e comprehendi para que serve o estudo e qual é o procedimento que serei submetido. A explicação que recebi esclarece os riscos e benefícios do estudo. Sei que o meu nome não será divulgado. Eu concordo em participar do estudo.

Declaro ter lido e compreendido este documento, bem como as informações verbais que me foram fornecidas pela/s pessoa/s que acima assina/m. Foi-me garantida a possibilidade de, em qualquer altura, recusar participar neste estudo sem qualquer tipo de consequências. Desta forma, aceito participar neste estudo e permito a utilização dos dados que de forma voluntária forneço, confiando em que apenas serão utilizados para esta investigação e nas garantias de confidencialidade e anonimato que me são dadas pelo/a investigador/a.

Nome:

Assinatura:

Data: / /

¹ http://portal.arsnorte.min-saude.pt/portal/page/portal/ARSNorte/Comiss%C3%A3o%20de%20%C3%89tica/Ficheiros/Declaracao_Helsinquia_2008.pdf

² <http://dre.pt/pdf1sdip/2001/01/002A00/00140036.pdf>

SE NÃO FOR O PRÓPRIO A ASSINAR POR IDADE OU INCAPACIDADE
(se o menor tiver discernimento deve também assinar em cima, se consentir)

Nome:

BI/CD Nº: DATA OU VALIDADE / /

GRAU DE PARENTESCO OU TIPO DE REPRESENTAÇÃO:

ASSINATURA

ESTE DOCUMENTO É COMPOSTO DE ... PÁGINA/S E FEITO EM DUPLICADO:
UMA VIA PARA O/A INVESTIGADOR/A, OUTRA PARA A PESSOA QUE CONSENTE

Assinatura do pesquisador responsável: (+244) 923237696

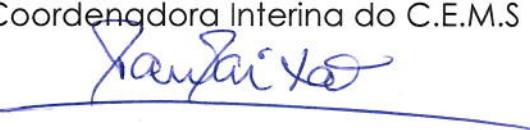
REPÚBLICA DE ANGOLA
MINISTÉRIO DA SAÚDE
COMITÉ DE ÉTICA
(CEMS)

PARECER N.º 631 /C.E.M.S/2023

TÍTULO DO PROJECTO: PREVALÊNCIA DO POLIMORFISMO DO GEN APOE (19q13.32) EM HIPERTENSOS HUAMBO. 2020-2025.

INVESTIGADOR RESPONSÁVEL: JOB CHIVANGULULA PAKISI

PARECER DO C.E.M.S:


Considerando o protocolo pouco elaborado, e sem uma descrição detalhada, é necessário que o investigador inclua informações sobre como será feita a colheita, o processamento e tratamento dos dados e amostras, as ferramentas de proteção e confidencialidade de dados. Entretanto, é ainda necessário esclarecer onde será feito o estudo e se o material será transportado;

O Comité emitiu o parecer de **APROVADO PROVISÓRIO** para o projecto "Avaliar a literacia comunicativa em saúde nos serviços de saúde".

Portanto, deverá ressubmeter o protocolo, com as recomendações que lhe foram dadas.

Segundo normas do C.E.M.S para os protocolos aprovados, deve ser enviado o relatório de acompanhamento e de término ao Secretariado, conforme modelo disponível na página <http://www.inis.gov.ao/comite-de-etica/>.

Luanda, 14 De Agosto de 2023.

CEMS
COMITÉ DE ÉTICA DO MINISTÉRIO DA SAÚDE
Joana Paixão
(Ph.D., MSc., BSc.)
Coordenadora Interina do C.E.M.S.

Rua Amílcar Cabral Nº. 96, à frente do Banco de Urgências do Hospital Josina Machel, Maianga – Luanda, Angola. **Telefone:** +244 924 390 307 **e-mail:** comitedeetica@inis.gov.ao e comitedeetica91@gmail.com

1 **Apolipoprotein E (APOE) Allele Frequencies and Genotypic Distribution in**
2 **Huambo, Angola**

4 **Running title:** Apolipoprotein E allele frequencies in Angola

6 Author's list

7 Job Pakisi, MSc^{1,2,3}, Vicente Martín-Sánchez^{2,3,4}, MD, PhD^{2,3,4}, Cruz S. Sebastião, PhD^{5,6,7}, Victor Moreno,
8 PhD^{8,9,10,11}, E. Bayón-Darkistade, PhD^{2,3}

10 Author's affiliations

11 ¹Faculdade de Medicina (FM), Universidade José Eduardo dos Santos (UJES), Huambo, Angola;

12 ²Universidade de León, León, España;

13 ³Instituto de Biomedicina, León, España

14 ⁴Ciberersp, España

15 ⁵Centro de Investigação em Saúde de Angola (CISA)|Instituto Nacional de Investigação em Saúde (INIS),
16 Luanda, Angola;

17 ⁶Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards
18 Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa,
19 UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal;

20 ⁷Centro Nacional de Investigação Científica (CNIC), Luanda, Angola.

21 ⁸Catalan Institute of Oncology, Barcelona, España

22 ⁹Institut d'Investigacio Biomedica de Bellvitge, Barcelona, España

23 ¹⁰Universitat Autònoma de Barcelona, España

24 ¹¹University of Barcelona, Barcelona, España

26 *Correspondences

27 ^{1,2,3}Job Pakisi, MSc. Email: jobpakisi19@gmail.com

30 **ABSTRACT**

31 Background: Non-communicable diseases (NCDs) are a leading cause of death globally, particularly in low-
32 and middle-income countries undergoing rapid epidemiological transition. Apolipoprotein E (ApoE)
33 polymorphisms have been implicated in modulating risk for cardiovascular and neurodegenerative diseases.
34 This study characterizes the distribution of APOE alleles and genotypes in an Angolan population sample and
35 explores associations with demographic variables. Methods: A cross-sectional study was conducted in Huambo
36 Province, Angola, with 200 unrelated adults aged 40 –70 years. Genotyping for ApoE2, ApoE3, and ApoE4 was
37 performed via real-time PCR. Allelic and genotypic frequencies were calculated and tested for Hardy-Weinberg
38 equilibrium. Associations with sex, age (≤ 54 vs > 54 years), and urban vs rural residence were analyzed. Results:
39 ApoE3 was the most frequent allele (63%), followed by ApoE4 (24.8%) and ApoE2 (12.2%). The ApoE3
40 homozygous genotype was prevalent (44%), with ApoE3/E4 (19%) and ApoE2/E3 (18%) also common.
41 Significant Hardy-Weinberg disequilibrium was observed due to excess ApoE4 homozygotes and deficit of
42 certain heterozygotes, consistent with population structuring and endogamy. ApoE4 prevalence was higher in
43 urban residents and older individuals, while ApoE3 and ApoE2 were more common in rural areas and younger
44 participants. Interpretation: Our results reveal notable genetic heterogeneity and highlight the epidemiological
45 and evolutionary importance of ApoE4 in Angola. The findings underscore the need for integrating population
46 genomics into public health strategies targeting NCD prevention, especially in rapidly urbanizing African
47 contexts.

48 **KEYWORDS:** APOE, Allele frequency, Angola, Non-communicable diseases.

49
50

51

52

53

54 **1 INTRODUCTION**

55 Non-communicable diseases (NCDs) account for three out of every four deaths worldwide, and three out of four
56 of these deaths occur in low- and middle-income countries (1). Demographic changes and lifestyle transitions
57 underlie the high prevalence of these diseases and their concerning rapid increase in emerging countries (2).
58 Additionally, interactions between genetic and environmental factors play a crucial role in the incidence and
59 course of these diseases and must be considered when designing prevention and control strategies (3,4).

60 Apolipoprotein E (ApoE) contributes to the modulation of immune and inflammatory responses, and its different
61 polymorphisms can have differential effects on some of the most relevant NCDs such as cardiovascular,
62 autoimmune, and neurodegenerative diseases (5,6). The clinical relevance of ApoE alleles lies in their
63 pleiotropic impact: the $\epsilon 3$ allele is usually associated with a balanced lipid profile, $\epsilon 2$ with some cardiovascular
64 protection in heterozygotes (though with a risk of dyslipidemia in homozygotes), and $\epsilon 4$ with a pro-atherogenic
65 phenotype characterized by increased LDL cholesterol, decreased HDL cholesterol, and a greater predisposition
66 to both atherosclerosis and cognitive decline including Alzheimer's disease (7).

67 The global distribution of ApoE alleles shows marked geographic and ethnic gradients (8). Worldwide, the $\epsilon 3$
68 allele, with prevalences exceeding 70%, is the most frequent and considered the wild-type allele. The $\epsilon 4$ allele
69 shows variable frequency and can reach up to 30% in some African populations. The $\epsilon 2$ allele is the least
70 common, generally not exceeding 10%. These differences reflect patterns of positive selection, environmental
71 pressures, and human migrations (8).

72 Angola, a Southwestern African country characterized by remarkable ethnic heterogeneity and a history marked
73 by migrations and admixture (9), constitutes a unique setting to analyze the genetic variability of APOE and its
74 relationship with emerging chronic diseases, which cause one in four deaths in the country (10). This study aims
75 to characterize the frequencies of APOE polymorphisms in Angola and their relationship with demographic
76 variables.

77 **2 MATERIAL AND METHODS**

78 **2.1 Study design and setting**

79 A cross-sectional study was conducted in Huambo Province, Angola, including a convenience sample of 200
80 unrelated adults (100 men and 100 women), half residing in urban areas and half in rural. Participants were aged

81 between 40 and 70 years (mean 55 ± 9 years; median 54). Exclusion criteria included major neurological
82 diseases, known high risk of severe cardiovascular disease, pregnancy, and HIV infection. The study was
83 approved by the Scientific Council of the Faculty of Medicine of Huambo (Deliberation No. 003/CC/23) and
84 the Ethics Committee of the Angolan Ministry of Health (031/C.E.M.S./2023).

85 **2.2 Sample collection and processing**

86 Peripheral blood was collected in EDTA tubes. Genomic DNA was extracted using QIAamp DNA Mini Kit
87 (QIAgen). ApoE genotyping for alleles ApoE2, ApoE3, and ApoE4 was performed by real-time PCR (StepOne
88 7500, Applied Biosystems) with SYBR Green and specific primers. Samples were analyzed in duplicate, with
89 positive and negative controls; a Ct value < 25 indicated allele positivity. Demographic data collected included
90 sex, age (categorized as ≤ 54 or > 54 years), and place of residence (urban or rural). Allelic and genotypic
91 frequencies were calculated from PCR results (10)

92 **2.3 Statistical analysis**

93 Descriptive statistics were used to calculate allelic and genotypic frequencies, expressed with 95% confidence
94 intervals (Clopper-Pearson method). Hardy-Weinberg equilibrium was assessed with chi-square tests ($\alpha = 0.05$).
95 The inbreeding coefficient (F-IS) was computed as $F\text{-IS} = (H_e - H_o) / H_e$, where H_e is expected heterozygosity
96 and H_o is observed heterozygosity. Allelic frequencies were compared using contingency chi-square tests;
97 genotypic frequencies were compared using Fisher's exact test.

98 **3 RESULTS**

99 The ApoE3 allele had the highest frequency, present in approximately two-thirds of participants, followed by
100 ApoE4 (24.8%) and ApoE2 (12.2%) (Table 1, Figure 1). Genotypic analysis revealed 62.5% homozygotes and
101 37.5% heterozygotes. The most frequent genotype was ApoE3 homozygous (44.0%; 95% CI: 37.6–50.4),
102 followed by ApoE3/E4 (19.0%; 95% CI: 13.2–24.8), ApoE2/E3 (18.0%; 95% CI: 12.3–23.7), and ApoE4/ε4
103 (15.0%; 95% CI: 10.1–19.9). ApoE2/E2 and ApoE2/ε4 genotypes were least frequent (3.5% and 0.5%,
104 respectively). Hardy-Weinberg equilibrium testing showed significant deviation ($\chi^2 = 51.73$; $df = 3$; $p < 0.001$),
105 driven by an excess of ApoE4 homozygotes and a deficit of ApoE2/ε4 and ApoE3/ε4 heterozygotes. The
106 inbreeding coefficient ($F\text{-IS} = 0.295$) indicated a substantial deficiency of heterozygotes. This pattern persisted
107 across sexes, urban/rural residence, and age groups. Significant differences were observed in allelic and
108 genotypic distributions by residence and age but not sex. ApoE3 was more prevalent in rural areas (72.0% vs

109 53.0% urban), while ApoE4 was more prevalent in urban residents (34.0% vs 15.5% rural). Similarly, ApoE3/3
110 homozygotes predominated in rural (59.0%) versus urban (29.0%) areas, with ApoE3/4 heterozygotes more
111 common in urban settings (28.0% vs 10.0%). Age comparisons showed higher ApoE4 frequency in older
112 participants (>54 years: 34.3% vs ≤54 years: 15.4%) and higher ApoE2 in younger individuals (16.8% vs 8.6%),
113 with corresponding genotypic differences (E2/3 and E4/4).

114

115 **4 DISCUSSION**

116 This is the first study to describe the allelic and genotypic prevalences of apolipoprotein E in the Angolan
117 population. Our findings highlight the remarkable genetic and phenotypic heterogeneity present in the African
118 continent, as well as the coexistence of historical adaptive advantages with emerging risks stemming from
119 changes in lifestyle. The ε4 allele, which confers an advantage in environments characterized by high infectious
120 burden and nutritional limitations, is significantly associated with adverse impacts in urbanized settings with
121 Western lifestyles, marked sedentarism, and high-calorie diets. This represents a critical challenge for public
122 health strategies aimed at preventing and managing emerging diseases, particularly cardiovascular and
123 neurodegenerative disorders.

124 In our sample, the ApoE3 allele was the most prevalent, with an approximate frequency of 63%, a figure that
125 falls within the commonly reported range in global and regional studies, where ApoE3 typically varies from
126 55% to 90% across different human populations, showing closer similarity to prevalences reported for other
127 sub-Saharan groups (8,11). This prevalence reaffirms the ancestral and dominant nature of the ApoE3 allele in
128 most populations, including African and Afro-descendant groups, strengthening the validity and consistency of
129 our results in the population genetics context.

130 The frequency of the ε4 allele shows considerable worldwide variation, ranging from 0% in some Indian
131 populations to nearly 50% in certain Brazilian or African tribes (12). In our case, the observed value of 24.8%
132 represents an intermediate level within the African spectrum. While North African regions, such as Morocco
133 and Tunisia, report low frequencies (<10%), other West African countries (such as Senegal: 3%) also exhibit
134 considerably lower levels. In contrast, countries like Uganda (25%), Rwanda (24%), South Africa (25.4%),
135 Nigeria (30%), Sudan (29%), and particularly Khoisan groups (37%) and Central African pygmies (41%)
136 present high prevalences (13–15). This finding underscores the genetic heterogeneity within the African
137 continent and emphasizes the uniqueness of the Angolan population structure.

138 The high prevalence of the ε4 allele, especially in its homozygous form, partly explains the significant genotype
139 disequilibrium observed. The locally elevated persistence of ε4 may be modulated by adaptive factors such as
140 infection resistance or reproductive advantages, as proposed for other African populations (14,16), and also
141 suggests population structure and endogamy consistent with localized marital practices in Angola. This
142 phenomenon, widely documented in African studies, highlights the need to account for population substructure
143 to avoid bias in genetic association analyses and phenotypic risk interpretation (17), also explaining the high
144 inbreeding coefficient observed.

145 This dynamic balance of risks and benefits underscores the importance of a personalized approach in medicine
146 and public health for countries undergoing epidemiological transition.

147 The epidemiological relevance of the ε4 allele lies in its well-established association with increased risk of
148 cardiovascular and neurodegenerative diseases in Western lifestyle contexts. However, in Africa, phenotypic
149 plasticity attributable to environmental, infectious, and behavioral factors is observed (18–20). As documented
150 by Masemola et al. in South Africa, rural-urban transitions and lifestyle changes may precipitate future
151 cardiovascular epidemics in ε4 carriers, emphasizing the urgency of genetic-environmental surveillance in
152 Angola to anticipate disease burden evolution (21).

153 Analyzing the biomedical impact of the ε4 allele, several studies have confirmed its relationship with elevated
154 total cholesterol, LDL-c concentrations, and reduced HDL-c, findings consistent with extensive international
155 evidence (22–25). This positions ε4 as a potential driver of the epidemiological transition in developing
156 countries, accelerating the prevalence of non-communicable diseases (NCDs). On the other hand, the ε2 allele,
157 while usually associated with a favorable lipid profile in heterozygotes, can predispose to severe dyslipidemias
158 (type III) in the presence of factors such as diabetes and excessive alcohol intake, reinforcing the multifactorial
159 nature of clinical risk (26–28).

160 Regarding urban-rural differences, the predominance of ApoE3 in rural areas (72%) contrasts with the higher
161 frequency of ApoE4 in urban environments (34%), probably due to internal migrations, inequalities in healthcare
162 access, and lifestyle variations. This pattern suggests that urban exposure may amplify cardiovascular and
163 neurodegenerative risk for ε4 carriers, in line with global findings (29).

164 Age distribution is also relevant: the higher prevalence of ApoE4 among older individuals (≥ 54 years) and
165 predominance of ApoE2 in younger cohorts raise questions about natural selection and cohort dynamics. While

166 ApoE4 has traditionally been linked to reduced longevity (30), Lane et al. demonstrated that its impact on
167 mortality varies significantly according to ethnic and geographic context, potentially exhibiting neutral effects
168 in African and Afro-descendant groups (17). A more recent study by Vivian et al. found no association between
169 ApoE4 genotypes and mortality in elderly individuals ≥ 80 years; however, classical cardiovascular factors such
170 as smokings and diabetes increased mortality risk, whereas physical activity and elevated systolic blood pressure
171 reduced it (31). Therefore, it is essential to deepen longitudinal studies incorporating environmental and clinical
172 variables to clarify these effects (32).

173 In conclusion, these findings emphasize the urgency of public health policies integrating population genomics
174 as a tool for risk assessment and healthcare planning, especially in rapidly changing urban African contexts.
175 Targeted preventive interventions should be prioritized, as recommended by Masemola et al., to mitigate the
176 rise of NCDs in genetically susceptible groups and to test new personalized medicine strategies. Future research
177 should expand sample sizes, incorporate additional genetic markers and clinical-metabolic variables, and
178 conduct multicenter and trans-ethnic meta-analyses following models such as Marini et al., which enable a
179 comprehensive understanding of genetic, environmental, and population health interactions. This study
180 significantly contributes to describing the ApoE genomic profile in Angola, demonstrating the predominance of
181 the ApoE3 allele, but confirming the sustained epidemiological and evolutionary importance of ApoE4, the
182 presence of endogamy and population structuring, and the potential impact of these factors on African medicine
183 and public health.

184 **ACKNOWLEDGMENTS**

185 The authors thank patients for their participation. We also thank UJES, Huambo Health Delegation, The Unileon
186 infectious disease laboratory team, CISA|INIS, and CNIC for the logistical, administrative and scientific
187 support.

188 **DATA AVAILABILITY STATEMENT**

189 The data supporting this study's findings are available on request from the corresponding author.

190 **CONFLICT OF INTEREST STATEMENT**

191 The authors declare no conflict of interest.

192 **FINDING**

193 CSS was support by the AREF (AREF-312-SEBA-S-C1029), Science and Technology Development Project
194 (PDCT) within the scope of the MUTHIVAO project (Number 36 MESCTI/PDCT/2022), FCT MARVEL
195 (PTDC/SAU-PUB/4018/2021), FCT GHTM-UID/04413/2020 and LA-REAL-LA/P/0117/2020.

196 **AUTHOR CONTRIBUTION STATEMENT**

197 Conceptualization: JP and ED. Investigation: JP, VM_S, CSS, VM_S, and EB-D. Methodology: JP, VM_S, and
198 EB-D. Validation: JP, and EB-D. Data curation: JP, VM_S, CSS, and ED. Formal analysis: JP, VM_S, and ED.
199 Data collection: JP. Supervision: ED. Writing - original draft: JP, VM_S, CSS, VM and ED. Writing – review
200 & editing: JP, VM_S, CSS, VM, and ED. All authors approved the final manuscript for publication.

201 **ORCID**

202 Job Pakisi – 0009-0006-9343-1126

203 Vicente Martín-Sánchez - 0000-0003-0552-2804

204 Cruz S. Sebastião – 0000-0003-1232-0119

205 Victor Moreno – 0000-00022818-5487

206 E. Bayón-Darkistade – 0000-0002-0562-8281

207 **REFERENCES**

- 208 1. WHO. Global Challenges in Cardiovascular Prevention in Populations with Low Socioeconomic Status.
209 2025.
- 210 2. National Institute of Environmental Health Sciences. Environmental Factor - February 2022: Ethical
211 issues emerge in gene-environment interactions research [Internet]. 2022 [cited 2025 Jul 23]. Available
212 from: <https://factor.niehs.nih.gov/2022/2/feature/2-feature-research-ethics>
- 213 3. Peng J, Xu H, Tang X. Global Inequalities in the Burden of Digestive Diseases From 1990 to 2019:
214 Findings From the Global Burden of Disease Study 2019. Gastroenterology. 2024 Jan 1;166(1):223-
215 224.e1.

216 4. Matsunaga A, Saito T. Impact of Apolipoprotein E Variants: A Review of Naturally Occurring Variants
217 and Clinical Features. *J Atheroscler Thromb* [Internet]. 2025 [cited 2025 Jul 27];32(3):281–303.
218 Available from: <https://pubmed.ncbi.nlm.nih.gov/39779225/>

219 5. Civeira-Marín M, Cenarro A, Marco-Benedí V, Bea AM, Mateo-Gallego R, Moreno-Franco B, et al.
220 APOE Genotypes Modulate Inflammation Independently of Their Effect on Lipid Metabolism. *Int J Mol
221 Sci* [Internet]. 2022 Nov 1 [cited 2025 Apr 9];23(21):12947. Available from:
222 <https://www.mdpi.com/1422-0067/23/21/12947/htm>

223 6. Islam S, Noorani A, Sun Y, Michikawa M, Zou K. Multi-functional role of apolipoprotein E in
224 neurodegenerative diseases. *Front Aging Neurosci* [Internet]. 2025 [cited 2025 Jul 23];17:1535280.
225 Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11813892/>

226 7. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. *J Mol Med
(Berl)* [Internet]. 2016 Jul 1 [cited 2025 Jul 23];94(7):739–46. Available from:
228 <https://pubmed.ncbi.nlm.nih.gov/27277824/>

229 8. CORBO RM, SCACCHI R. Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a
230 “thrifty” allele? *Ann Hum Genet* [Internet]. 1999 Jul [cited 2024 Nov 23];63(Pt 4):301–10. Available
231 from: <https://pubmed.ncbi.nlm.nih.gov/10738542/>

232 9. Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history,
233 modern human origins, and complex disease mapping. *Annu Rev Genomics Hum Genet* [Internet]. 2008
234 [cited 2025 Jul 23];9:403–33. Available from: <https://pubmed.ncbi.nlm.nih.gov/18593304/>

235 10. Calero O, Hortigüela R, Bullido MJ, Calero M. Apolipoprotein E genotyping method by real time PCR,
236 a fast and cost-effective alternative to the TaqMan and FRET assays. *J Neurosci Methods* [Internet]. 2009
237 Oct 15 [cited 2025 Jul 15];183(2):238–40. Available from: <https://pubmed.ncbi.nlm.nih.gov/19583979/>

238 11. Martínez-Martínez AB, Torres-Perez E, Devanney N, Del Moral R, Johnson LA, Arbones-Mainar JM.
239 Beyond the CNS: The many peripheral roles of APOE. *Neurobiol Dis* [Internet]. 2020 May 1 [cited 2025
240 Apr 15];138. Available from: <https://pubmed.ncbi.nlm.nih.gov/32087284/>

241 12. Ruiz M, Arias I, Rolón G, Hernández E, Garavito P, Silvera-Redondo C. Análisis del polimorfismo del
242 gen APOE en la población de Barranquilla, Colombia. *Biomédica* [Internet]. 2016 Jan 1 [cited 2025 Jul
243 27];36(1):52–8. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572016000100006&lng=en&nrm=iso&tlang=es

244 13. Atadzhyan M, Mwaba MH, Mukomena PN, Lakhi S, Mwaba P, Rayaprolu S, et al. Frequency of APOE,
245 MTHFR and ACE polymorphisms in the Zambian population. *BMC Res Notes* [Internet]. 2014 Mar 28

247 [cited 2024 Dec 9];7(1):1–10. Available from:
248 <https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-7-194>

249 14. Van Exel E, Koopman JJE, Van Bodegom D, Meij JJ, De Knijff P, Ziem JB, et al. Effect of APOE ε4
250 allele on survival and fertility in an adverse environment. *PLoS One* [Internet]. 2017 Jul 1 [cited 2024
251 Nov 14];12(7). Available from: <https://pubmed.ncbi.nlm.nih.gov/28683096/>

252 15. Soo CC, Farrell MT, Tollman S, Berkman L, Nebel A, Ramsay M. Apolipoprotein E Genetic Variation
253 and Its Association With Cognitive Function in Rural-Dwelling Older South Africans. *Front Genet*. 2021
254 Oct 14;12.

255 16. Octavio-Aguilar P, Ramos-Frías J. Aplicación de la genética de poblaciones en el ámbito de la medicina.
256 Genética de poblaciones humanas *ENSAYO Biomédica*. 2014;34:171–80.

257 17. Lane KA, Gao S, Hui SL, Murrell JR, Hall KS, Hendrie HC. Apolipoprotein E and mortality in African-
258 Americans and Yoruba. *J Alzheimers Dis* [Internet]. 2003 [cited 2024 Nov 24];5(5):383. Available from:
259 <https://pmc.ncbi.nlm.nih.gov/articles/PMC3212028/>

260 18. Mooijaart SP, Berbée JFP, Van Heemst D, Havekes LM, De Craen AJM, Slagboom PE, et al. ApoE
261 Plasma Levels and Risk of Cardiovascular Mortality in Old Age. *PLoS Med* [Internet]. 2006 [cited 2024
262 Nov 23];3(6):e176. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC1457005/>

263 19. Lindner K, Gavin AC. Isoform- and cell-state-specific APOE homeostasis and function. *Neural Regen
264 Res* [Internet]. 2024 Nov 1 [cited 2024 Dec 11];19(11):2456. Available from:
265 <https://pmc.ncbi.nlm.nih.gov/articles/PMC11090418/>

266 20. Wang Y, Lou H, Wang M, Mei J, Xing T, Wang F, et al. Correlation between genetic polymorphisms in
267 apolipoprotein E and atrial fibrillation. *Rev Port Cardiol* [Internet]. 2022 May 1 [cited 2024 Oct
268 9];41(5):417–23. Available from: <https://pubmed.ncbi.nlm.nih.gov/36062643/>

269 21. Masemola ML, Alberts M, Urdal P. Apolipoprotein E genotypes and their relation to lipid levels in a
270 rural South African population. *Scand J Public Health*. 2007 Aug;35(SUPPL. 69):60–5.

271 22. Leskinen H, Tringham M, Karjalainen H, Iso-Touru T, Hietaranta-Luoma HL, Marnila P, et al. APOE
272 Genotypes, Lipid Profiles, and Associated Clinical Markers in a Finnish Population with Cardiovascular
273 Disease Risk Factors. *Lifestyle Genom* [Internet]. 2022 May 23 [cited 2025 Apr 3];15(2):45–54.
274 Available from: <https://pubmed.ncbi.nlm.nih.gov/34942620/>

275 23. Guo JL, Braun D, Fitzgerald GA, Hsieh YT, Rougé L, Litvinchuk A, et al. Decreased lipidated ApoE-
276 receptor interactions confer protection against pathogenicity of ApoE and its lipid cargoes in lysosomes.

277 Cell [Internet]. 2025 Jan 9 [cited 2025 Apr 15];188(1). Available from:
278 <https://pubmed.ncbi.nlm.nih.gov/39532095/>

279 24. Matsuo H, Kaneko T, Fujikawa K, Ohara H, Mashimo T, Nabika T. Development of a new model for
280 combined atherosclerosis and hypertension: ApoE-knockout spontaneously hypertensive rat.
281 Atherosclerosis [Internet]. 2017 Aug 1 [cited 2025 Jul 5];263:e86. Available from:
282 <https://www.atherosclerosis-journal.com/action/showFullText?pii=S0021915017305294>

283 25. Cahua-Pablo G, Cruz M, Moral-Hernández O Del, Leyva-Vázquez MA, Antúnez-Ortiz DL, Cahua-Pablo
284 JA, et al. Elevated Levels of LDL-C are Associated With ApoE4 but Not With the rs688 Polymorphism
285 in the LDLR Gene. *Clin Appl Thromb Hemost* [Internet]. 2016 Jul 1 [cited 2025 Apr 15];22(5):465–70.
286 Available from: <https://pubmed.ncbi.nlm.nih.gov/25601895/>

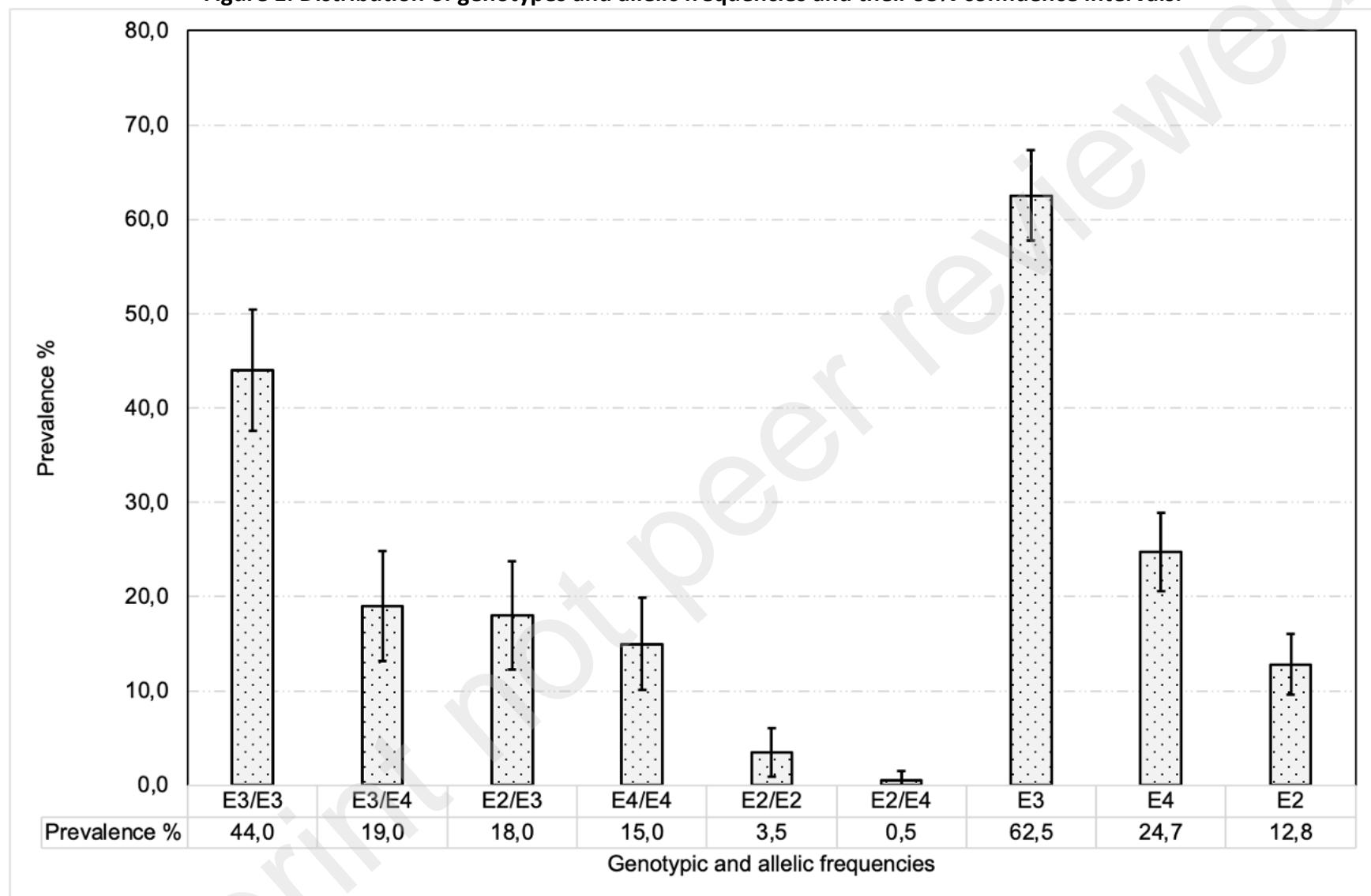
287 26. Hu J, Liu CC, Chen XF, Zhang YW, Xu H, Bu G. Opposing effects of viral mediated brain expression of
288 apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and A β metabolism in apoE4-targeted
289 replacement mice. *Mol Neurodegener*. 2015 Mar 5;10(1).

290 27. Littlejohns TJ, Collister JA, Liu X, Clifton L, Tapela NM, Hunter DJ. Hypertension, a dementia polygenic
291 risk score, APOE genotype, and incident dementia. *Alzheimer's & Dementia* [Internet]. 2023 Feb 1 [cited
292 2025 Jul 5];19(2):467–76. Available from: <https://onlinelibrary.wiley.com/doi/full/10.1002/alz.12680>

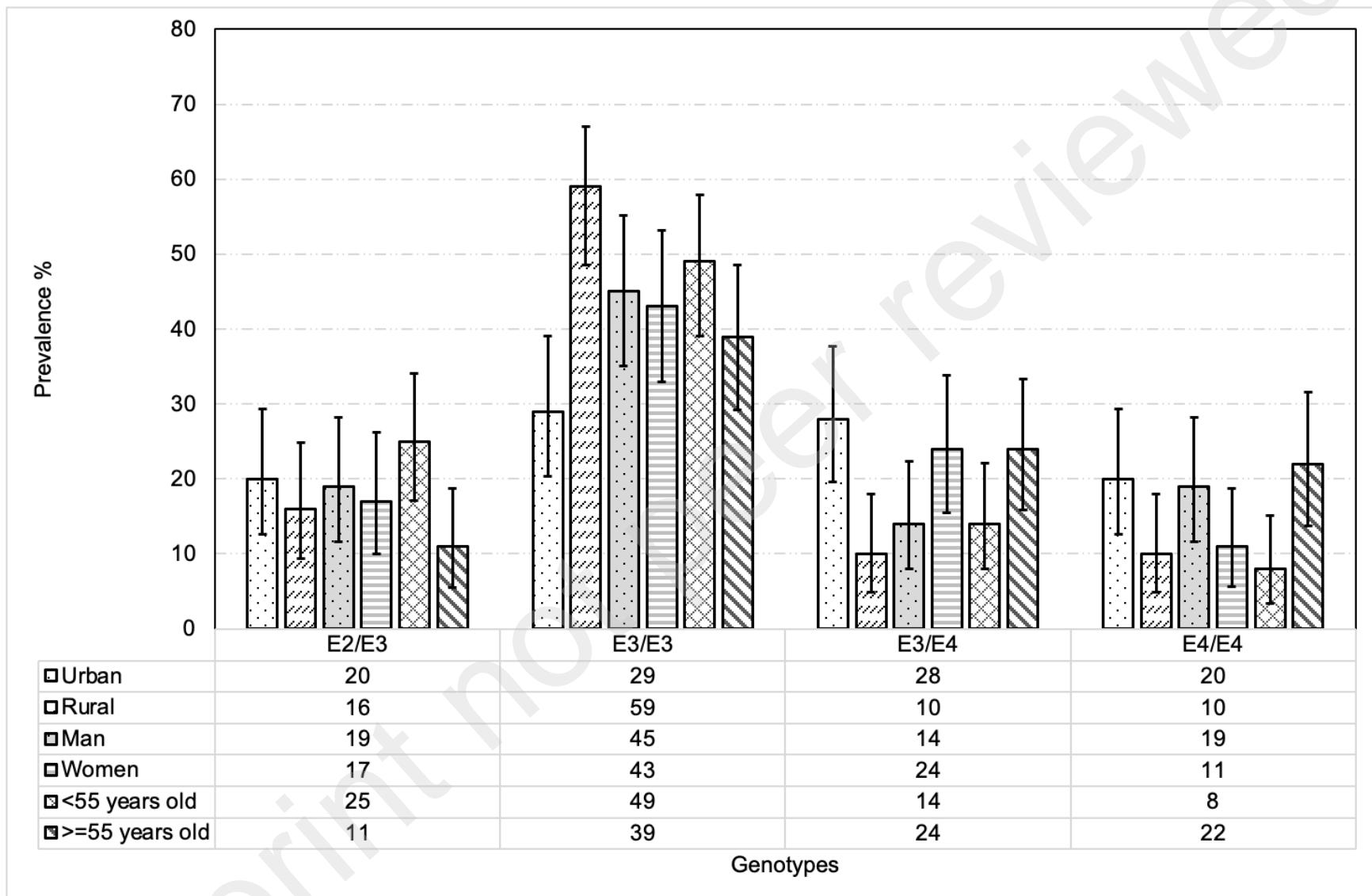
293 28. Lozano S, Padilla V, Avila ML, Gil M, Maestre G, Wang K, et al. APOE Gene Associated with
294 Cholesterol-Related Traits in the Hispanic Population. *Genes (Basel)* [Internet]. 2021 Nov 1 [cited 2025
295 Feb 14];12(11). Available from: <https://pubmed.ncbi.nlm.nih.gov/34828374/>

296 29. Freeman EE, Bastasic J, Grant A, Leung G, Li G, Buhrmann R, et al. Inverse Association of APOE ϵ 4
297 and Glaucoma Modified by Systemic Hypertension: The Canadian Longitudinal Study on Aging. *Invest
298 Ophthalmol Vis Sci* [Internet]. 2022 Dec 1 [cited 2024 Nov 25];63(13). Available from:
299 <https://pubmed.ncbi.nlm.nih.gov/36479943/>

300 30. Wang YZ, Zhao W, Moorjani P, Gross AL, Zhou X, Dey AB, et al. Effect of apolipoprotein E ϵ 4 and its
301 modification by sociodemographic characteristics on cognitive measures in South Asians from LASI-
302 DAD. *Alzheimers Dement* [Internet]. 2024 Jul 1 [cited 2025 Jul 23];20(7):4854–67. Available from:
303 <https://pubmed.ncbi.nlm.nih.gov/38889280/>


304 31. Vivian L, Bruscato NM, Werle BM, de Carli W, Soares RAG, Santos PCJ de L, et al. Association of
305 cardiovascular risk factors and apoe polymorphism with mortality in the oldest old: A 21-year cohort
306 study. *Arq Bras Cardiol*. 2020 Nov 1;115(5):873–81.

307 32. Marini S, Crawford K, Morotti A, Lee MJ, Pezzini A, Moomaw CJ, et al. Association of Apolipoprotein
308 E With Intracerebral Hemorrhage Risk by Race/Ethnicity: A Meta-analysis. *JAMA Neurol* [Internet].
309 2019 Apr 1 [cited 2024 Nov 24];76(4):480–91. Available from:
310 <https://jamanetwork.com/journals/jamaneurology/fullarticle/2723997>
311
312
313
314
315


Table 1. Distribution of genotypic and allelic variants according to various variables.

Genotypes and Alleles	1.Urban \$		2.Rural \$		0.Male *		1.Female *		0.Age&		1.Age&		TOTAL		
	%	IC95%	%	IC95%	%	IC95%	%	IC95%	%	IC95%	%	IC95%	N	%	IC95%
E2/E2	3.0	0.6 8.4	4.0	1.1 9.8	3.0	0.6 8.4	4.0	1.1 9.8	4.0	1.1 9.9	3.0	0.6 8.5	7	3.5	0.9 6.1
E2/E3	20.0	12.6 29.3	16.0	9.4 24.8	19.0	11.6 28.2	17.0	10.0 26.2	25.0	17.1 34.1	11.0	5.5 18.7	36	18.0	12.3 23.7
E2/E4	0.0	0.0 3.6	1.0	0.0 5.6	0.0	0.0 3.6	1.0	0.0 5.6	1.0	0.0 5.4	0.0	0.0 3.6	1	0.5	0.0 1.5
E3/E3	29.0	20.4 39.1	59.0	48.6 67.0	45.0	35.1 55.1	43.0	33.0 53.2	49.0	39.1 57.9	39.0	29.2 48.6	88	44.0	37.6 50.4
E3/E4	28.0	19.6 37.7	10.0	4.9 18.0	14.0	8.0 22.3	24.0	15.5 33.8	14.0	8.0 22.1	24.0	15.9 33.3	38	19.0	13.2 24.8
E4/E4	20.0	12.6 29.3	10.0	4.9 18.0	19.0	11.6 28.2	11.0	5.6 18.7	8.0	3.4 15.1	22.0	13.8 31.6	30	15.0	10.1 19.9
E2	13.0	8.3 17.7	12.5	7.9 17.1	12.5	7.9 17.1	13.0	8.3 17.7	16.8	11.7 21.9	8.6	4.7 12.4	51	12.8	9.6 16.0
E3	53.0	46.1 59.9	72.0	65.8 78.2	61.5	54.8 68.2	63.5	56.9 70.1	67.8	61.4 74.2	57.1	50.2 64.0	250	62.5	57.8 67.3
E4	34.0	27.5 40.5	15.5	10.5 20.5	26.0	19.9 32.0	23.5	17.7 29.3	15.4	10.3 20.3	34.3	27.7 40.9	99	24.7	20.6 28.9
Genotypes	\$ p-value = 0.0001				* p-value = 0.2813				& p-value = 0.0025						
Alleles	\$ p-value <0,0001				* p-value = 0.85				& p-value <0,0001						

Figure 1. Distribution of genotypes and allelic frequencies and their 95% confidence intervals.

Figure 2. Distribution of genotypic variables according to the different categories analyzed.

Dear Editor, Dr. Zoë Mullan,

I am submitting for your consideration the manuscript entitled “Apolipoprotein E (APOE) Allele Frequencies and Genotypic Distribution in Huambo, Angola.” This is the first study to characterize APOE allele and genotype distributions in an Angolan population from Huambo Province, highlighting their association with demographic factors such as age, sex, and urban/rural residence.

Our findings show significant genetic heterogeneity, especially a higher prevalence of the ApoE4 allele in urban and older individuals. This genetic insight is crucial for informing public health strategies that integrate genomics to tackle the rising burden of non-communicable diseases in rapidly urbanizing African settings.

We believe this manuscript will interest The Lancet Global Health readership for its implications in global health policy regarding vulnerable populations in transition.

The study was conducted with full ethical approval and there are no conflicts of interest to declare.

Thank you for your consideration. I am available for any further information you may require.

Sincerely,

Job Chivangulula Pakisi, MSc.
José Eduardo dos Santos University
University of Leon. Email: Jobpaksi19@gmail.com, Jpakis00@estudiantes.unileon.es
7 August 2025