

Review Article

Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of *Enterococci* as an Emerging Pathogen in Raw Milk Cheese

Celso Raul Silambo Chaves ,^{1,2} Acácio Salamandane ,² Emilia Joana F. Vieira ,³ and Cátia Salamandane ,^{2,4}

¹Clinical Laboratory of the Matacuane Military Health Center, Avenida Alfredo Lawley No 42, Matacuane, Beira, Mozambique

²Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique

³Laboratory of Active Principles, National Center for Scientific Research,

Ministry of Higher Education, Science, Technology and Innovation, Avenida Ho Chi Min No 201, Luanda, Angola

⁴Laboratory of Food Quality and Safety, Lúrio Interdisciplinary Research Center, Lúrio University, Marrere Campus, Nampula 4250, Mozambique

Correspondence should be addressed to Acácio Salamandane; asalamandane@unilurio.ac.mz

Received 18 July 2024; Accepted 16 December 2024

Academic Editor: Daniel Gyamfi Amoako

Copyright © 2024 Celso Raul Silambo Chaves et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like *E. coli* and pathogens like *S. aureus*. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers.

Keywords: antibiotic resistance genes; cross-contamination; food safety; food supply chain; lactic acid bacteria; raw milk cheese

1. Introduction

The overutilization of antibiotics in dairy cattle on livestock farms may lead to the emergence of antibiotic-resistant pathogens within the food supply chain, particularly within raw milk processing factories [1, 2]. The dairy food supply chain facilitates the transmission of antibiotic-resistant bacteria (ARB) between animals and humans,

particularly through the use of raw milk in fermented products like traditional raw milk cheese [3–5]. In recent years, the approach of foodborne pathogens has expanded beyond on virulence factors to encompass an investigation into the presence of antibiotic resistance genes (ARGs), carried by both pathogens and commensal bacteria found in food [2, 6]. The potential of foodborne bacteria to harbor antibiotic resistance determinants raises concerns about

their role in spreading resistance [5, 7]. This is especially worrisome if these bacteria become opportunistic pathogens, even more when resistance genes are transferred to pathogenic bacteria, thereby undermining the effectiveness of antibiotics for treating common infections [8].

Fermented foods are widely acknowledged as rich sources of functional compounds that play a crucial role in nutrition and health. Such foods offer various benefits, such as reducing the risk of heart disease and promoting digestion, immunity, and weight loss [9, 10]. Several studies have focused on identifying bioactive peptides and microbial metabolites in fermented foods, strengthening the connection between these foods and their beneficial health effects [11–13]. Ebner et al. [14] reported the identification of about 236 multifunctional peptide sequences like VYPFPGPPIP, KIEKFQSEEQQQT, VLLENLLR, and NLHLPLP in kefir. Hati, Sakure, and Mandal [15] report peptides with amino acid sequences IPP and VPP with antihypertensive and antioxidative activity in *Lactobacillus helveticus*-fermented honey-based milk. Peptides sequences with ACE inhibitory activity in the order Lys-Pro-Ala-Gly-Asp-Phe > Lys-Ala-Ala-Leu-Ser-Gly-Met > Lys-Lys-Ala-Ala-Met-Ala-Met > Leu-Asp-His-Val-Pro-Gly-Gly-Ala-Arg have been produced in milk fermented by *Lactobacillus helveticus* and *Lactobacillus casei* [16]. Fermented dairy products offer an ideal delivery system for introducing probiotic bacteria that are beneficial to the human gut microbiome [10, 12].

Cheese is one of the most important fermented dairy products produced and consumed by humans. Cheese production involves the use of lactic acid bacteria (LAB) as starter cultures, such as *Lactobacillus*, *Streptococcus*, *Enterococcus*, *Bifidobacterium*, and *Leuconostoc*, during the fermentation and maturation of cheese [5, 9]. *Enterococcus* is a genus of bacteria commonly found in cheese, which is crucial in maturation. Moreover, *Enterococcus* contributes significantly for a unique flavor, aroma, and texture in many artisanal cheeses [1, 4, 17–21]. Even though *Enterococcus* plays a vital role in cheesemaking, despite the contribution of *Enterococcus faecium* and *Enterococcus faecalis* to the fermentation and ripening process, the virulence factors directly associated with and the fact they act as reservoirs for antimicrobial resistance genes (ARGs) rise debates about its presence in scientist arena [4, 22–24].

This review aims to analyze the potential risk of transmission of ARGs in the cheese production chain. This approach is particularly relevant due to the importance of cheeses in the human diet and the growing contemporary interest in fermented food consumption. The focus will be on *Enterococcus* strains involved in the fermentation of artisanal cheeses.

2. Food Supply and Transmission of Antibiotic-Resistant Bacteria

Chemical compounds, specifically antibiotics, are commonly used to promote growth farming, improve feed efficiency, enhance reproduction, and reduce illness and death in livestock [25]. However, excessive antibiotic use in food production can contribute to the spread of ARB by creating

environments that favor the survival of resistant strains [26]. In this context, the food chain is particularly vulnerable to this problem, as bacteria can be exposed to high levels of antibiotics, especially in meat and dairy production [27].

The use of antibiotics in food production also contributes to the selection of resistance determinants and the exchange of ARGs via horizontal gene transfer (HGT) [28, 29]. Gene encoding resistance to β -lactams antibiotics, resistance to tetracycline, and aminoglycoside are the most common ARGs found in *Escherichia coli* and *Salmonella* recovered from livestock and poultry products [30]. Several studies have highlighted that the rise in methicillin-resistant *Staphylococcus aureus* (MRSA), is intricately linked to the overuse of antibiotics within the livestock industry. It was proven that overuse of antibiotics causes a therapy inefficiency, due to the alterations in penicillin binding caused by the PBP2' protein encoded by the *mecA* gene present in MRSA [30–33].

However, the promotion of ARB in food is not limited solely to the administration of antibiotics in livestock. Handling and processing also play crucial roles in this issue, presenting critical points to be considered [34]. During processing, there are significant risks of bacterial transmission, both by handlers and the equipment used. Antibiotic resistance has been identified in various tools used in the production and processing food, especially in meat and dairy-based products [35–37]. Usually, these microorganisms are present on the food equipment in the form of biofilm—a complex and highly structured aggregation of sessile bacteria, formed on biotic or abiotic surfaces, which are resistant to high concentrations of biocides [38–40]. The contamination of food with ARB and antibiotic ARGs during production, handling and processing, distribution, and sale can significantly contribute to the spread of antimicrobial resistance throughout the food chain.

Lactobacillus and *Enterococcus* are the fermenting bacterial genus reporting high antibiotic resistance profile and ARGs. *Lactobacillus pentosus* and *Leuconostoc pseudomesenteroides* isolated from natural fermented table olives were reported resistance to streptomycin (83%–100%), vancomycin and teicoplanin (70%–100%), trimethoprim (76%), trimethoprim/sulfamethoxazole (71%–100%), and cefuroxime (44%) (Table 1) [41]. In addition, gene encoding multidrug resistance Efflux Pump (*NorA*), penicillin resistance (*MepA*), and fluoroquinolone resistance gene (*MdeA*) were found in *Lactobacillus pentosus* and *Leuconostoc pseudomesenteroides* (Table 1). *Lactobacillus* isolated from fermented foods showed resistance to tetracycline, erythromycin, ciprofloxacin, chloramphenicol, kanamycin, ampicillin, and clindamycin (Table 1) [42], and *tetW*, *tetM*, *tetS* encoding to tetracycline resistance, gene *ermB* encoding to erythromycin resistance were founded (Table 1).

In *Lactobacillus* isolated from fermented dairy products, the most frequent antibiotic resistance profile is related to tetracycline, erythromycin, ciprofloxacin, chloramphenicol, kanamycin, ampicillin, clindamycin (Table 1), genes encoding resistance to tetracycline (*tetM*), erythromycin (*ermB*), and gene encoding an aminoglycoside-modifying

TABLE 1: Profiles and antibiotic resistance genes identified in fermented foods.

Microorganisms	Type of fermented food	Antibiotic resistance profile	Antibiotic resistance genes	Reference
<i>Lactobacillus pentosus</i> <i>Leuconostoc pseudomesenteroides</i>	Aloren� green table olives	STR, VAN, TEI, TRI, STX, CEF	<i>NorA</i> , <i>MepA</i> and <i>MdeA</i>	Casado Mu�oz et al. [41]
<i>Lactobacillus helveticus</i>	Chinese sausages and vegetables	VAN, CIP, TET TET, ERY, CIP, CHL, KAN, AMP, CLI	<i>vanX</i> , <i>vanE</i> , <i>gyr(A)</i> , and <i>tetM</i> <i>tetM</i> , <i>ermB</i> , <i>alphaA3</i> , <i>mefA</i>	Guo et al. [43] Pan, Hu, and Wang [42]
<i>Lactobacillus casei</i>	Turkish cheese, yogurt, kefir, and boza Chinese fermented milk	VAN, CIP, TET CHL, TET, ERY, CIP, VAN STR, GEN, KAN, CIP, CHL, VAN, TET	<i>vanX</i> , <i>vanE</i> , <i>gyr(A)</i> , <i>tetM</i> <i>tetM</i> , <i>vanA</i> <i>tetM</i> , <i>sull</i> , <i>sul2</i> , <i>strA</i> , <i>strB</i> , <i>aac(6')-aph(2')</i> , <i>aph(3')-II</i> and <i>aph(3')-III</i>	Guo et al. [43] Basb�b�l, �z�teber, and Biyik [44] Li et al. [45]
<i>Lactobacillus plantarum</i>	Fermented milk Chinese sausages and vegetables Turkish cheese, yogurt, kefir, and boza Tibetan kefir grains	VAN, CIP, TET TET, ERY, CIP, CHL, KAN, AMP, CLI CHL, TET, ERY, CIP, VAN TET, ERY, CLI, CHL	<i>vanX</i> , <i>vanE</i> , <i>gyr(A)</i> , and <i>tetM</i> <i>tetM</i> , <i>ermB</i> , <i>alphaA3</i> , <i>mefA</i> <i>tetM</i> , <i>vanA</i> <i>aac(3')</i> , <i>lsa</i> , <i>tetM</i> , <i>TetL</i> , <i>tetW</i> , <i>ErmB</i>	Guo et al. [43] Pan, Hu, and Wang [42]
<i>Lactobacillus bulgaricus</i>	Chinese yogurts Chinese yogurts Traditional fermented milk Chinese milk	PEN, KAN VAN, GEN, STR KAN, CIP, STR, TRI, AMP, VAN STR, GEN, KAN, CIP, CHL, VAN TET	<i>aac(6')-IIIa</i> <i>Van</i> , <i>aadB</i> , <i>aph</i> , <i>aadA2</i> <i>rpoB</i> , <i>ermB</i> , <i>aadA</i> , <i>blaZ</i> , <i>cat</i> , <i>vanX</i> <i>tetM</i> , <i>sull</i> , <i>sul2</i> , <i>strA</i> , <i>strB</i> , <i>aac(6')-aph(2')</i> , <i>aph(3')-II</i> , <i>aph(3')-III</i>	Zhou et al. [46] Wang et al. [47] Guo et al. [49] Li et al. [45]
<i>Lactococcus lactis</i>	Polish raw milk and artisanal products Turkish cheese, yogurt, kefir, and boza	TET CHL, TET, ERY, CIP, VAN	<i>tetM</i> , <i>tetS</i> <i>tetM</i> , <i>vanA</i>	Zycka-Krzesinska et al. [50] Basb�b�l, �z�teber, and Biyik [44]
<i>Lactobacillus paracasei</i>	Raw Ewe's milk cheese, raw water buffalo cheese, and raw cow milk cheese Cultures for use in the food industry	ERY TET, ERY TET, KAN, CHL	<i>tetW</i> , <i>tetM</i> , <i>ermB</i>	Comunian et al. [51]
<i>Lactobacillus delbrueckii</i>	Chinese fermented milk Chinese dairy products Chinese dairy products	STR, GEN, KAN, CIP, CHL, VAN, TET CHL, VAN, STX, TET, GEN, ERY, CLI	<i>tetM</i> , <i>tetW</i> , <i>tetO</i> , <i>blaOXA</i> , <i>blaZ</i> , <i>cat</i> <i>tetM</i> , <i>sull</i> , <i>sul2</i> , <i>strA</i> , <i>strB</i> <i>Not available</i>	Zarzecka, Chaj�cka-Wierzbowska, and Zadernowska [52] Li et al. [45] Xu et al. [53]
<i>Lactobacillus paraplatanarum</i>	Cultures for use in the food industry	TET, KAN, CHL	<i>tetM</i> , <i>tetW</i> and <i>tetO</i> , <i>blaZ</i> , <i>cat</i>	Zarzecka, Chaj�cka-Wierzbowska, and Zadernowska [52]
<i>Lactobacillus delbrueckii</i>	Cultures for use in the food industry Chinese dairy products	CHL, VAN, TRI, TET, CFT, GEN, ERY, CLI	<i>tetM</i> , <i>tetW</i> and <i>tetO</i> , <i>blaZ</i> , <i>cat</i> <i>Not available</i>	Zarzecka, Chaj�cka-Wierzbowska, and Zadernowska [52]
<i>Lactobacillus brevis</i>	Chinese fermented sausages and vegetables	TET, ERY, CIP, CHL, KAN, AMP, CLI	<i>tetM</i> , <i>ermB</i> , <i>alphaA3</i> , <i>mefA</i>	Pan, Hu, and Wang [42]
<i>Lactobacillus kefiri</i>	Tibetan kefir grains	TERI, ERY, CLI, CHL	<i>aac(3')</i> , <i>lsa</i> , <i>tetM</i> , <i>tetL</i> , <i>tetW</i> , <i>ErmB</i>	Zheng et al. [46]

TABLE 1: Continued.

Microorganisms	Type of fermented food	Antibiotic resistance profile	Antibiotic resistance genes	Reference
<i>Streptococcus thermophilus</i>	Chinese yogurts	VAN, GEN, STR	<i>van</i> , <i>aadB</i> , <i>aph</i> , <i>aadA2</i>	Wang et al. [48]
<i>Lactobacillus fermentum</i>	Chinese fermented sausages and vegetables	TET, ERY, CIP, CHL, KAN, AMP, CLI	<i>tetM</i> , <i>ermB</i> , <i>aphA3</i> , <i>mefA</i>	Pan, Hu, and Wang [42]
	Turkish cheese, yogurt, kefir, and boza	CHL, TET, ERY, CIP, VAN ERY, TET, AMP, OXA, AZT, VAN	<i>tetM</i> , <i>vanA</i>	Pan, Hu, and Wang [42]
<i>Enterococcus faecium</i>	Pasteurized fermented dairy products	ERY, TET, AMP, OXA, CFT, AZT, VAN	<i>ermB</i> , <i>ermC</i> , <i>vanC1</i> , <i>vanC2</i> , <i>vanC3</i>	Basbül Bülbül, Özteber, and Biyik [44]
	Pasteurized fermented dairy products	ERY, TET, AMP, OXA, CFT, AZT, VAN	<i>ermB</i> , <i>ermC</i> , <i>vanC1</i> , <i>vanC2</i> , <i>vanC3</i>	Mariam [54]
	Raw milk cheese	TET, ERY, VAN, GEN, P, RD	<i>ermA</i> , <i>ermC</i> , <i>tetM</i> , <i>vanA</i> , <i>pbp5</i> , <i>blaZ</i>	Mariam [54]
<i>Enterococcus faecalis</i>	Raw milk cheese	P, TET, RD, ERY, VAN	<i>ermC</i> , <i>tetM</i> , <i>vanA</i> , <i>vanB</i> , <i>blaZ</i>	Salamandane et al. [38]
<i>Lactobacillus namurensis</i>	Chinese fermented sausages and vegetables	TET, ERY, CIP, CHL, KAN, AMP, CLI	<i>tetM</i> , <i>ermB</i> , <i>aphA3</i> , <i>mefA</i>	Pan, Hu, and Wang [42]
<i>Lactobacillus fermentum</i>	Milk products	ERY, TET	<i>tetM</i> , <i>tet(K)</i> , <i>erm(C)</i>	Anisimova and Yarulina [55]
	Turkish cheese, yogurt, kefir, and boza	CHL, TET, ERY, CIP, VAN CHL, VAN, CFT, TRI, TET, GEN, ERY, CLI	<i>tetM</i> , <i>vanA</i>	Basbül Bülbül, Özteber, and Biyik [44]
	Chinese dairy products	GEN, ERY, CLI	Not available	Xu et al. [53]
<i>Enterococcus species</i>	Artisanal dairy products	VAN, AMP, TET, STR, GEN, KAN, ERY, CHL, CLI, CIP AMP, CIP, LEV, LZD, QD, TEC, TET, VAN	<i>vanA</i> , <i>vanB</i> , <i>vanC</i> , <i>blaZ</i> , <i>tetU</i> , <i>tetK</i> , <i>acaC-aphD</i> , <i>aadE</i> , <i>ermA</i>	Amidi-Fazli and Hanifian [24]
	Raw milk cheese	Not available		Bastião Rocha et al. [1]
<i>Lactobacillus coryniformis</i>	Turkish cheese, yogurt, kefir, and boza	CHL, TET, ERY, CIP, VAN	<i>tetM</i> , <i>vanA</i>	Basbül Bülbül, Özteber, and Biyik [44]
<i>Streptococcus thermophilus</i>	Chinese fermented milk	STR, GEN, KAN, CIP, CHL, VAN, TET	<i>tetM</i> , <i>stull</i> , <i>sul2</i> , <i>strA</i> , <i>strB</i> ,	Li et al. [45]
	Pasteurized fermented dairy products	ERY, TET, AMP, OXA, CFT, AZT, VAN	<i>ermB</i> , <i>ermC</i> , <i>vanC1</i> , <i>vanC2</i> , <i>vanC3</i>	Mariam [54]
	Chinese dairy products	CHL, VAN, CFT, TRI, TET, GEN, ERY, CLI	Not available	Xu et al. [53]
<i>Lactobacillus acidophilus</i>	Chinese milk	STR, GEN, KAN, CIP, CHL, VAN, TET	<i>tetM</i> , <i>sull</i> , <i>sul2</i> , <i>strA</i> , <i>strB</i> , <i>aac(6')-aph(2')</i> , <i>aph(3')-II</i> and <i>aph(3')-III</i>	Li et al. [45]
<i>Lactobacillus rhamnosus</i>	Chinese milk	STR, GEN, KAN, CIP, CHL, VAN, TET	<i>tetM</i> , <i>sull</i> , <i>sul2</i> , <i>strA</i> , <i>strB</i> , <i>aac(6')-aph(2')</i> , <i>aph(3')-II</i> and <i>aph(3')-III</i>	Xu et al. [53]
	Chinese dairy products	CHL, VAN, CFT, TRI, TET, GEN, ERY, CLI	Not available	Xu et al. [53]

Abbreviations: AMP, Ampicillin; AZT, Aztreonamycin; CEF, Cefuroxime; CFT, Ceftriaxone; CHL, Chloramphenicol; CIP, Ciprofloxacin; CL1, Clindamycin; ERY, Erythromycin; GEN, Gentamycin; KAN, kanamycin; LEV, levofloxacin; LZD, linezolid; OXA, Oxacillin; P, penicillin; PEN, Penicillin; QD, quinupristin-dalfopristin; RD, rifampicin; STR, Streptomycin; STX, TET/Sulfamethoxazole; TEC, teicoplanin; TEI, Teicoplanin; TET, Tetracycline; TRI/Trimethoprim/sulfamethoxazole; VAN, Vancomycin.

enzyme (*aph (3'')) were the most frequent gene found in *Lactobacillus* isolated from fermented dairy products.*

3. Pathways of Antimicrobial Resistance in the Cheese Factory Environment

Food chains provide an excellent vehicle for spreading ARB, spoilage, and pathogenic bacteria from farm to fork. ARB-contaminating products on farms can survive on raw and undercooked produce, potentially affecting consumer health [56, 57]. Animal-based foods like meat, eggs, and milk are a major source of ARGs in the food chain [56, 58].

The use of microorganisms in fermentation can inadvertently introduce ARGs into the food chain. The European Food Safety Authority (EFSA) addressed this concern in 2012 by issuing guidelines to mitigate the risk in starter cultures [59]. However, unlike industrial fermented foods, spontaneous fermentations like kefir, kombucha, and artisanal cheeses rely on naturally occurring microorganisms from their raw materials [5, 60–62]. Raw milk's exceptional nutritional composition provides a favorable environment for the growth of a wide range of microorganisms, from beneficial to pathogenic [63].

Microbiota of milk encompass both microorganisms associated with the mammary gland and teat, as well as contaminants introduced by diseases like mastitis [5, 64]. Despite the health benefits of using raw milk in fermented food for humans [4–6], zoonotic pathogens (including *Campylobacter* spp., Shiga toxin-producing *Escherichia coli*, *Staphylococcus aureus*, *Listeria monocytogenes*, and *Salmonella enterica*) have been well documented as the most common foodborne pathogens resulting from the contamination of raw milk [63, 65–67]. The management and control of these zoonotic pathogens in livestock often involve the routine use of antibiotics to preserve the health of animals in livestock farming [68]. However, this procedure can increase the likelihood of the emergence and spread of ARGs [68, 69].

Metagenomic analysis showed a significantly higher number of ARGs in raw milk compared to pasteurized milk [70]. In an experimental study, Liu et al. demonstrated the conjugative transfer of the *blaCMY-2* gene, associated with ceftazidime resistance, from *E. coli* in raw milk to other bacterial species [70].

A largely overlooked source of ARG transmission is related to common agricultural practices, including irrigation, grazing, silage production, feed manufacturing, and the use of agricultural wastewater or animal manure (Figure 1) [5, 68]. This convergence of agricultural activities and animal waste may serve as a critical point in the dissemination of ARGs, posing a significant risk to the health of both humans and animals [71].

Irrigation plays a crucial role in agricultural production, facilitating the healthy growth of crops [72]. However, irrigation water contaminated with antibiotic residues, either from agricultural practices or environmental pollution, can contribute to the spread of these compounds and their ARGs [68, 72]. Furthermore, the frequent use of antibiotics in

livestock farming and intensive agriculture contributes to the presence of these compounds in water, creating a conducive environment for the development and spread of resistant bacteria [73].

Silage, feed production, and animal waste management can also contribute to the spread of ARG [74]. Slurry and wastewater from livestock operations can contaminate the environment (soils and water) and crops with antibiotic residues and ARB, potentially affecting human health (Figure 1) [73–75]. Addressing this issue demands a collaborative effort involving effective regulations, sustainable agricultural practices, and increased awareness among all stakeholders in the food chain.

3.1. Influence of Food Processing and Preservation Techniques. Bacterial survival and growth in food are influenced by processing techniques, preservation methods, and adherence to food safety practices [57]. Unlike industrial dairy processing, traditional PDO cheese dairies often avoid using additives and preservatives [1, 5]. The quality of Protected PDO cheeses is guaranteed by using high-quality raw materials, adhering to strict hygiene standards, and harnessing the benefits of natural fermentation [1, 21, 76].

During cheese production, milk proteins coagulate into curds upon the addition of rennet or other coagulants, followed by the draining of whey. The subsequent shaping and curing processes define whether the cheese will be semicured or fully cured, influencing its texture from soft to hard and affecting overall firmness [77]. During this process, cheese factory workers can introduce ARB poor hygiene practices, such as not washing hands or wearing contaminated clothing (Figure 1), also, inadequately cleaned equipment can spread ARB between production batches.

During the curing/maturation process, cheeses are kept under controlled conditions for varying periods, allowing for the development of distinctive biochemical, physicochemical, and organoleptic characteristics [77, 78]. The cheese is treated regularly to prevent mold growth, ensuring its quality and preservation. Improper handling of cheese or poor sanitation can result in the transfer of resistant bacteria from contaminated surfaces or workers to the cheese. The spread of foodborne pathogens and ARB in cheese by direct or/and cross-contamination during processing has been documented by several studies [79–81].

Organic acids, such as lactic, acetic, butyric, and sorbic acid, contribute to the low pH in certain cheeses, creating an environment that limits the survival of pathogenic bacteria [82, 83]. Food safety measures like refrigeration, pasteurization, and bio-protective cultures create additional barriers to microbial growth in cheese [82, 83].

Despite these measures, numerous cases of cheese-related illness outbreaks have been reported in Europe and other parts of the world in recent decades [77, 79]. Soft cheeses crafted from raw milk have commonly served as a vehicle for foodborne pathogens, although pasteurized-milk cheeses have also been implicated in outbreaks as carriers of the causative agents [77].



FIGURE 1: Pathways of bacterial contamination and antimicrobial resistance transmission in the cheese factory environment. This is an original figure conceptualized and created by the authors.

3.2. Influence of Biofilms. Biofilms are complex and highly structured aggregations of sessile bacteria, which are formed on biotic or abiotic surfaces, embedded in a self-produced extracellular matrix of exopolysaccharides, proteins, and DNA [40, 84–86]. Biofilms represent an important source of hazard in food industry and cause a significant health and economic impact [40, 87, 88]. Biofilms are implicated in recurrent contamination and outbreaks within food production environments [89]. Unlike antibiotic resistance, which involves genetic changes, persistence is a phenotypic adaptation that poses unique challenges for detection and control.

Several studies have demonstrated that microorganisms within biofilms exhibit significantly higher resistance to antimicrobial agents, often requiring 10 to 1000 times the concentration needed to eradicate equivalent planktonic populations [38, 39, 87, 88]. The high resistance observed in biofilms is attributed to quorum sensing, a microbial communication mechanism that enables coordinated responses to environmental challenges. Quorum sensing allows biofilm-dwelling microorganisms to conserve resources, reduce metabolic activity, and activate protective mechanisms against antimicrobial agents [84, 85].

The presence of biofilms in cheese factory environments poses a significant risk, as they can harbor a diverse microbial community, including beneficial LAB, spoilage organisms, and potentially pathogenic microorganisms [38, 40, 90]. Within biofilms, interactions between diverse microbial species facilitate the exchange of genetic material, enhancing the biofilm's evolutionary adaptability and resilience [38, 40, 91].

The microbial diversity of milk used for cheese production make cheese factory environments highly susceptible to biofilm formation increasing the risk of contamination of processed cheese by ARB, highlighting the importance of stringent preventive measures [5, 38, 87]. The protein- and fat-rich nature of the milk and dairy by-products used in cheese production creates an ideal environment for bacterial growth and biofilm formation, while the combination of high humidity levels and moderate temperatures commonly present in cheese factories further favors microbial proliferation [92]. Materials widely used in the process, such as stainless steel and plastic, are susceptible to biofilm formation, especially when their surfaces are damaged or scratched [38, 39].

Several metagenomic studies have revealed a high and diverse presence of genetic material related to antimicrobial resistance in cheese factories, attesting to the fact that dairies act as reservoirs for ARGs [5, 70, 93, 94]. These studies emphasize the importance of understanding and monitoring the spread of these genes in the context of food safety.

Yao et al. [95] evaluated the antibiotic resistance profile of *Lactococcus*, *Lactobacillus*, and *Streptococcus* isolated in cheese and found high resistance to sulfonamides (100%), aminoglycosides (91.7%), and tetracycline (31%). In *Enterococcus* recovered from raw milk cheese, high resistance was found to the antibiotic's vancomycin (87.5%), erythromycin (75%), tetracycline (50%), and penicillin (37.5%) [38]. Multidrug-resistant (MDR) diarrheagenic *E. coli* was recovered in Minas raw milk cheese in Minas Gerais [96]. A study of antibiotic resistance *Staphylococcus* species in a dairy factory showed multidrug resistance in 52% of the isolates, with resistance to penicillin being the most frequent,

followed by cefoxitin, oxacillin, gentamicin, ciprofloxacin, and chloramphenicol [97]. Isolates recovered from cheese samples, packer equipment, cheese mold, and food handlers showed a similar antibiotic profile and were found to carry the *meca* gene [97]. The findings reported in this study suggest that antibiotic resistance and highly virulent strains from different sources can be found in the dairy processing environment, causing significant concern for researchers, producers, and consumers.

3.3. Inadequate Sanitation Practices and Use of Disinfectants or Biocides. The overuse of disinfectants and biocides without proper protocols can facilitate the spread of antibiotic resistance through HGT [98]. Excessive or inappropriate use of certain biocides can also induce cross-resistance, where bacteria become resistant to both disinfectants and antibiotics [99, 100]. Some disinfectants, such as quaternary ammonium compounds or chlorine-based agents, can trigger genetic mutations or select for resistance mechanisms similar to those used against antibiotics [101]. For instance, efflux pumps, proteins that expel toxic compounds, can be activated by biocides and pump out antibiotics, reducing their effectiveness [102, 103]. Biocide-tolerant bacteria are more likely to exhibit multidrug resistance, posing a significant threat to food safety and public health [100].

When cleaning and sanitation procedures fail to completely remove bacterial contaminants from surfaces like conveyor belts, cutting tools, storage tanks, and pipelines, bacteria can survive and form biofilms [104, 105]. Biofilms provide additional protection against cleaning agents and disinfectants, making them persistent sources of contamination that can release bacteria into subsequent production batches.

Repeated exposure to sublethal doses of disinfectants can select for increasingly resistant strains, making the bacterial communities in the production environment more difficult to control [98]. This ongoing cycle of contamination and resistance can affect multiple product lines within the same facility, spreading ARB across different cheese varieties or dairy products [92, 106]. If resistant bacteria enter the final product, they can reach consumers, leading to foodborne illness outbreaks that are difficult to treat due to the bacteria's resistance to antibiotics.

3.4. Horizontal Gene Transfer. HGT refers to the transfer of genetic material, including ARGs, between organisms across different species or lineages [107]. The transfer of ARGs between bacteria can lead to the emergence of MDR strains, posing a serious threat to public health and food safety [108]. HGT is particularly concerning in cheese factories due to the high microbial diversity of cheese matrix that facilitate different mechanisms of HGT, namely, conjugation, transformation, and transduction [109].

In cheese factories, conjugation, a process involving the direct transfer of genetic material between two bacterial cells in physical contact, is the most important mechanism [109, 110]. Conjugation is the primary mechanism of HGT

in *Enterococcus* species, significantly contributing to the spread of ARGs within *Enterococcus* communities in cheese-making environments [111, 112]. An example of this is vancomycin resistance in *E. faecium* and *E. faecalis* species, mediated by a conjugative plasmid [113].

Given the high concentration and diversity of bacteria in cheese, especially during fermentation, conjugation facilitates the rapid dissemination of genetic information [109]. In traditional cheeses made from raw milk, where the microbial load is high, the chances of conjugation occurring are increased, allowing antibiotic-resistant strains to spread rapidly across batches of cheese. The formation of biofilms on equipment surfaces in cheese-making factories also provides an ideal environment for conjugation [114].

Transformation, the uptake of free DNA from the environment by bacterial cells, is another mechanism by which *Enterococcus* species can acquire new genes in cheese-making facilities. There, bacteria take up naked DNA from their surroundings, which can come from dead bacterial cells or be released into the environment during processing [115]. This process can occur when bacterial cells are lysed during pasteurization, fermentation, or cleaning operations, releasing their DNA into the milk or cheese curd [116]. If ARGs or other virulence factors are present in the environment, *Enterococcus* species in the cheese-making process may acquire them through transformation. However, transformation is less frequent than conjugation and requires the bacteria to be in a "competent" state, capable of absorbing and integrating foreign DNA [57].

Transduction is another mechanism of gene transfer that occurs in *Enterococcus faecium* and *Enterococcus faecalis*. In transduction, bacteriophages (viruses that infect bacteria) transfer DNA between the bacteria [117]. Although transduction is less common than conjugation in *Enterococcus* species, it can still play a role in spreading ARGs or other virulence factors [111, 112, 117]. In cheese-making factories, where bacteriophages may be present in the milk or introduced through environmental contamination, transduction could contribute to the spread of unwanted traits in the microbial community [118]. Although phage contamination is generally less common than bacterial contamination, phages can persist in dairy environments and pose a risk in cheese production if they facilitate gene transfer between *Enterococcus* populations [118].

4. Risks Associated With *Enterococcus faecium* and *Enterococcus faecalis*

4.1. Benefits of *E. faecium* and *E. faecalis* in Cheese. *E. faecium* and *E. faecalis* are LAB that play a vital role in the fermentation and ripening of various traditional and non-traditional cheeses. Though they are often associated with gut microbiota and probiotics [119], their contribution to cheesemaking has garnered attention due to the beneficial traits they bring to the production process [120, 121]. These bacteria are commonly found in raw milk and are added intentionally as starter or adjunct cultures in some cheese varieties [38, 120]. Their ability to thrive in extreme conditions, such as high salt concentrations, low pH levels, and

elevated temperatures, makes them particularly well suited for cheese fermentation.

One of the key benefits of *E. faecium* and *E. faecalis* in cheesemaking is their contribution to the development of flavor. These bacteria produce enzymes that break down proteins, fats, and carbohydrates in the cheese matrix, resulting in the release of a wide array of volatile compounds that give cheeses their distinctive taste and aroma. In particular, the breakdown of casein by Enterococcus strains enhances the development of complex flavors in both hard and soft cheeses. In traditional Mediterranean cheeses like Pecorino, Feta, and various artisanal goat and sheep cheeses, these strains are naturally present and significantly influence the tangy, sharp, or savory characteristics of the final product. Moreover, these Enterococcus species contribute to texture improvement, particularly in soft cheeses like Ricotta or Mozzarella. Their proteolytic activity helps in breaking down milk proteins, leading to a smooth and creamy consistency. In nontraditional or experimental cheeses, where novel microbial combinations are explored, *E. faecium* and *E. faecalis* have been used to enrich both flavor and texture, offering new possibilities for cheesemakers looking to create innovative products.

4.2. Risks of *E. faecium* and *E. faecalis* in Cheese. Despite the importance of *E. faecium* and *E. faecalis* as starter and probiotic strains, they also present specific risks that both cheesemakers and consumers should be aware of, especially in the production and consumption of traditional and nontraditional cheeses. One of the primary risks associated with *E. faecium* and *E. faecalis* in cheese production is the potential to spread of ARGs, particularly vancomycin-resistant *Enterococcus* (VRE) [38]. The raw sheep's milk cheese production chain harbors a potential concern, *E. faecalis* and *E. faecium*, two seemingly harmless bacteria, can serve as silent carriers of ARGs within this industry. Understanding their role in this context is critical to ensuring the safety and sustainability of raw milk cheese production. Several factors in the production process create conditions that facilitate the spread of ARGs. The absence of pasteurization, a key step in eliminating harmful bacteria, allows *E. faecalis* and *E. faecium* to thrive. Additionally, the use of antibiotics in animal husbandry can spill over into the milk, further increasing the risk of resistant bacteria being present. Furthermore, the diverse microbial communities present during cheesemaking can facilitate the horizontal transfer of resistance genes between different bacterial species.

Enterococci are notorious for their ability to harbor diverse mobile genetic elements within their genomes [121]. These elements, such as plasmids, transposons, prophages, and insertion sequences, can be readily integrated and utilized by enterococci [118, 122]. This facilitates the efficient transfer of acquired determinants, including virulence factors and ARGs, among strains of the same species, or even between species within the same genus or beyond. Notably, many of these highly transmissible plasmids are known to carry genes associated with enterococcal virulence and

antibiotic resistance [121]. Virulence traits and ARGs in enterococci were previously reported to be caused by gene horizontal or vertical transfer mechanisms and by the ability to receive genetic material [121, 123]. Experimental studies have confirmed the horizontal transfer of ARGs, such as *ermB*, from an enterococcal strain of animal origin to a strain of human origin [121]. This mechanism, facilitated by the transfer of genetic elements such as plasmids or transposons, plays a more significant role in the dissemination of antimicrobial resistance than the clonal spread of ARB [121, 124, 125]. A significant concern is the potential for trans-conjugation, a process through which enterococci can acquire virulence and antibiotic resistance determinants. This poses a serious threat to the safety of enterococcal strains that currently lack these harmful genes, as they could acquire them from both human and non-human reservoirs [121]. This raises significant concerns regarding the safety of using such strains as probiotics.

While the allure of raw sheep's milk cheese is undeniable, it is crucial to address the potential public health concerns linked to antibiotic resistance. Understanding the roles of *E. faecalis* and *E. faecium*, adopting responsible production practices, and ensuring continuous monitoring are essential steps to safeguard the safety and sustainability of this cherished tradition. These measures protect both consumers and the broader integrity of our food system. Notably, *E. faecalis* and *E. faecium* have been associated with a high potential for the horizontal transfer of ARGs, virulence factors, and elements that promote biofilm formation on various surfaces, including stainless steel, polyvinyl chloride, and polystyrene [23, 24, 38, 40, 126].

Several studies have investigated the antibiotic resistance profiles of *Enterococcus* strains isolated from cheese [1, 4, 23, 38, 126–131]. One such study focused on *Enterococcus* strains recovered from raw ewe's milk [38], revealing significant resistance levels: 75% of isolates were resistant to erythromycin, 50% to tetracycline, and 87.5% to vancomycin. Additionally, all VRE isolates exhibited multidrug resistance and harbored the *vanA* gene [38]. Similar results were found in *Enterococci* isolated from ewe's and goat's milk cheeses, where *E. faecium* exhibited 100% resistance to vancomycin, while *E. faecalis* demonstrated 85.7% resistance to vancomycin and 71.4% resistance to erythromycin [128].

In *Enterococcus* species, *vanA* is one of the key genes regulating and expressing vancomycin resistance. This gene, along with other vancomycin resistance-related genes (*vanR*, *vanS*, *vanH*, *vanX*, and *vanZ*), is located on the transposon Tn1546, which is frequently associated with plasmids in *E. faecium* [132]. The expression of these genes leads to the production of altered peptidoglycan precursors ending in D-Ala-D-lactate instead of the typical D-Ala-D-Ala structure [132, 133]. Because *vanA* is plasmid-mediated, vancomycin resistance in *E. faecium* is likely the result of HGT, making it transferable to other bacteria, either within the same species or across different species. Similarly, erythromycin resistance in *Enterococcus* can also spread via HGT. This resistance is linked to the presence of *erm* genes (*ermA*, *ermB*, and *ermC*), which encode erythromycin

ribosome methylases [134]. These genes were initially identified on the Tn554 transposon in the chromosome of *Staphylococcus aureus* [135].

Tetracycline resistance was detected in 75% of *E. faecalis* and 25% of *E. faecium* isolates from Serra da Estrela PDO cheese [38], as well as in 75% of *E. faecalis* and 25% of *E. faecium* isolates from Azeitão and Nisa cheeses [1]. In Serra da Estrela PDO cheese, all tetracycline-resistant phenotypes were associated with the presence of the *tetM* gene [38]. This gene, which is highly prevalent among *Enterococcus* species, is primarily located on the bacterial chromosome and is often linked to conjugative transposons belonging to the Tn916/Tn1545 family [136].

4.3. Mitigation of the Risk. The results from this study highlight the significant risk posed by ARGs and ARB strains in the dairy environment, especially in the context of *Enterococci* species such as *E. faecium* and *E. faecalis* in cheese production. The findings raise important concerns for researchers, producers, and consumers alike regarding the potential health implications of antibiotic resistance in the food chain.

To mitigate these risks, several strategies to reduce antibiotic resistance in cheese production focus on controlling antibiotic use and ensuring safety throughout the production process should be implemented. Limiting antibiotic use on dairy farms to only essential treatments, as prescribed by veterinarians, and avoiding antibiotics critical for human health reduce the risk of developing ARB. Regularly testing milk for antibiotic residues before cheese production helps identify and prevent contamination, ensuring that antibiotics do not reach consumers. Implementing strict hygiene protocols in the milking, transport, and cheese production areas as well as proper sanitation minimizes the spread of bacteria, reducing opportunities for antibiotic-resistant strains to multiply.

The study also underscores the importance of understanding gene transfer mechanisms in *Enterococci*, particularly in cheese-making facilities. Gene transfer via conjugation plays a dominant role in the spread of ARGs, with transduction and transformation acting as supplementary pathways. These processes are especially prevalent in high-contact environments, such as biofilms on processing equipment or in raw-milk cheeses. Research into these mechanisms is crucial for developing strategies to enhance the safety of both traditional and industrial cheese varieties.

5. Conclusion

The study highlights that ARGs and ARB in dairy processing environments pose significant risks to food safety. Key findings indicate that *Enterococci*, particularly *E. faecium* and *E. faecalis*, contribute to the spread of ARGs through conjugation, transduction, and transformation, especially in biofilms and raw-milk cheeses. To mitigate these risks, the study recommends responsible practices such as regular monitoring for ARB, strict hygiene and sanitation protocols,

cautious antibiotic use in dairy farming, and strategies to prevent biofilm formation. These measures are essential to ensure the safety and sustainability of cheese production, safeguarding both consumer health and global food systems.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contributions

C.R.S.C. conceptualized the study. A.S., C.R.S.C., and C.S. developed the methodology. C.S., C.R.S.C., and A.S. investigated the study. C.R.S.C., A.S., E.J.F.V., and C.S. provided the resources and performed the formal analysis. C.R.S.C., E.J.F.V., and A.S. wrote the original draft and visualized. A.S., C.R.S.C., E.J.F.V., and C.S. reviewed and edited the manuscript and validated the study. All authors have read and agreed to the published version of the manuscript.

Funding

No funding was received for this research.

References

- [1] P. A. Bastião Rocha, J. M. Monteiro Marques, A. Barreto, and T. Semedo-Lemsaddek, “Enterococcus spp. From Azeitão and Nisa PDO-Cheeses: Surveillance for Antimicrobial Drug Resistance,” *Lebensmittel-Wissenschaft und-Technologie* 154 (2022): 112622, <https://doi.org/10.1016/j.lwt.2021.112622>.
- [2] J. Kim and J. Ahn, “Emergence and Spread of Antibiotic-Resistant Foodborne Pathogens From Farm to Table,” *Food Science and Biotechnology* 31, no. 12 (2022): 1481–1499, <https://doi.org/10.1007/s10068-022-01157-1>.
- [3] T. Silvetti, S. Morandi, and M. Brasca, “Does *Enterococcus faecalis* From Traditional Raw Milk Cheeses Serve as a Reservoir of Antibiotic Resistance and Pathogenic Traits?” *Foodborne Pathogens and Disease* 16, no. 5 (2019): <https://doi.org/10.1089/fpd.2018.2542>.
- [4] N. Russo, C. Caggia, A. Pino, T. M. Coque, S. Arioli, and C. L. Randazzo, “*Enterococcus* spp. in Ragusano PDO and Pecorino Siciliano Cheese Types: A Snapshot of Their Antibiotic Resistance Distribution,” *Food and Chemical Toxicology* 120 (2018): 277–286, <https://doi.org/10.1016/j.fct.2018.07.023>.
- [5] A. Salamandane, J. Leech, R. Almeida, et al., “Metagenomic Analysis of the Bacterial Microbiome, Resistome and Virulome Distinguishes Portuguese Serra Da Estrela PDO Cheeses From Similar Non-PDO Cheeses: An Exploratory Approach,” *Food Research International* 189 (2024): 114556, <https://doi.org/10.1016/j.foodres.2024.114556>.
- [6] M.-Y. I. Mohamed, I. Habib, and E. Pathogenic, “Coli in the Food Chain Across the Arab Countries: A Descriptive Review,” *Foods* 12 (2023): 3726, <https://doi.org/10.3390/foods12203726>.

[7] M. Rajaei, M.-H. Moosavy, S. N. Gharajalar, and S. A. Khatibi, "Antibiotic Resistance in the Pathogenic Foodborne Bacteria Isolated From Raw Kebab and Hamburger: Phenotypic and Genotypic Study," *BMC Microbiology* 21, no. 1 (2021): 272, <https://doi.org/10.1186/s12866-021-02326-8>.

[8] F. Dionisio, C. P. F. Domingues, J. S. Rebelo, F. Monteiro, and T. Nogueira, "The Impact of Non-Pathogenic Bacteria on the Spread of Virulence and Resistance Genes," *International Journal of Molecular Sciences* 24, no. 3 (2023): 1967, <https://doi.org/10.3390/ijms24031967>.

[9] H. Kaur, G. Kaur, and S. A. Ali, "Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties," *Fermentation* 8, no. 9 (2022): 425, <https://doi.org/10.3390/fermentation8090425>.

[10] N. K. Leeuwenal, C. Stanton, P. W. O'Toole, and T. P. Beresford, "Fermented Foods, Health and the Gut Microbiome," *Nutrients* 14, no. 7 (2022): 1527, <https://doi.org/10.3390/nu14071527>.

[11] Q. Guo, P. Chen, and X. Chen, "Bioactive Peptides Derived From Fermented Foods: Preparation and Biological Activities," *Journal of Functional Foods* 101 (2023): 105422, <https://doi.org/10.1016/j.jff.2023.105422>.

[12] D. Rizwan, F. A. Masoodi, S. M. Wani, and S. A. Mir, "Bioactive Peptides From Fermented Foods and Their Relevance in COVID-19 Mitigation," *Food Production, Processing and Nutrition* 5, no. 1 (2023): 53, <https://doi.org/10.1186/s43014-023-00165-w>.

[13] A. Chaudhary, S. Bhalla, S. Patiyal, G. P. S. Raghava, and G. Sahn, "FermFooDb: A Database of Bioactive Peptides Derived From Fermented Foods," *Heliyon* 7, no. 4 (2021): e06668, <https://doi.org/10.1016/j.heliyon.2021.e06668>.

[14] J. Ebner, A. Aşçı Arslan, M. Fedorova, R. Hoffmann, A. Küçükçetin, and M. Pischetsrieder, "Peptide Profiling of Bovine Kefir Reveals 236 Unique Peptides Released From Caseins During Its Production by Starter Culture or Kefir Grains," *Journal of Proteomics* 117 (2015): 41–57, <https://doi.org/10.1016/j.jprot.2015.01.005>.

[15] S. Hati, A. Sakure, and S. Mandal, "Impact of Proteolytic *Lactobacillus helveticus* MTCC5463 on Production of Bioactive Peptides Derived From Honey Based Fermented Milk," *International Journal of Peptide Research and Therapeutics* 23, no. 3 (2017): 297–303, <https://doi.org/10.1007/s10989-016-9561-5>.

[16] J. Li, J. Zhao, X. Wang, et al., "Novel Angiotensin-Converting Enzyme-Inhibitory Peptides From Fermented Bovine Milk Started by *Lactobacillus helveticus* KLDS.31 and *Lactobacillus casei* KLDS.105: Purification, Identification, and Interaction Mechanisms," *Frontiers in Microbiology* 10 (2019): 2643, <https://doi.org/10.3389/fmicb.2019.02643>.

[17] X. Zheng, X. Shi, and B. Wang, "A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese," *Frontiers in Microbiology* 12 (2021): 703284, <https://doi.org/10.3389/fmicb.2021.703284>.

[18] D. M. Linares, C. Gómez, E. Renes, et al., "Lactic Acid Bacteria and Bifidobacteria With Potential to Design Natural Biofunctional Health-Promoting Dairy Foods," *Frontiers in Microbiology* 8 (2017): 846, <https://doi.org/10.3389/fmicb.2017.00846>.

[19] R. Rocha, M. Vaz Velho, J. Santos, and P. Fernandes, "Serra Da Estrela PDO Cheese Microbiome as Revealed by Next Generation Sequencing," *Microorganisms* 9, no. 10 (2021): 2007, <https://doi.org/10.3390/microorganisms9102007>.

[20] F. Cardinali, R. Foligni, I. Ferrocino, et al., "Microbiological, Morpho-Textural, and Volatile Characterization of Portuguese Queijo de Nisa PDO Cheese," *Food Research International* 162 (2022): 112011, <https://doi.org/10.1016/j.foodres.2022.112011>.

[21] G. Rampanti, I. Ferrocino, J. Harasym, et al., "Queijo Serra Da Estrela PDO Cheese: Investigation Into Its Morpho-Textural Traits, Microbiota, and Volatilome," *Foods* 12, no. 1 (2022): 169, <https://doi.org/10.3390/foods12010169>.

[22] M. Golob, M. Pate, D. Kušar, et al., "Antimicrobial Resistance and Virulence Genes in *Enterococcus faecium* and *Enterococcus faecalis* From Humans and Retail Red Meat," *BioMed Research International* 2019 (2019): 1–12, <https://doi.org/10.1155/2019/2815279>.

[23] E. Jamet, E. Akary, M. A. Poisson, J. F. Chamba, X. Bertrand, and P. Serror, "Prevalence and Characterization of Antibiotic Resistant *Enterococcus faecalis* in French Cheeses," *Food Microbiology* 31, no. 2 (2012): 191–198, <https://doi.org/10.1016/j.fm.2012.03.009>.

[24] N. Amidi-Fazli and S. Hanifian, "Biodiversity, Antibiotic Resistance and Virulence Traits of Enterococcus Species in Artisanal Dairy Products," *International Dairy Journal* 129 (2022): 105287, <https://doi.org/10.1016/j.idairyj.2021.105287>.

[25] S. P. Thapa, S. Shrestha, and A. K. Anal, "Addressing the Antibiotic Resistance and Improving the Food Safety in Food Supply Chain (Farm-to-Fork) in Southeast Asia," *Food Control* 108 (2020): 106809, <https://doi.org/10.1016/j.foodcont.2019.106809>.

[26] J. Bengtsson-Palme, "Antibiotic Resistance in the Food Supply Chain: Where Can Sequencing and Metagenomics Aid Risk Assessment?" *Current Opinion in Food Science* 14 (2017): 66–71, <https://doi.org/10.1016/j.cofs.2017.01.010>.

[27] M. Virto, G. Santamarina-García, G. Amores, and I. Hernández, "Antibiotics in Dairy Production: Where Is the Problem?" *Dairy* 3 (2022): 541–564, <https://doi.org/10.3390/dairy3030039>.

[28] T. A. Johnson, R. D. Stedtfeld, Q. Wang, et al., "Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture," *mBio* 7, no. 2 (2016): e02214–e2215, <https://doi.org/10.1128/mBio.02214-15>.

[29] Y. Hu, X. Yang, J. Li, et al., "The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes," *Applied and Environmental Microbiology* 82, no. 22 (2016): 6672–6681, <https://doi.org/10.1128/AEM.01802-16>.

[30] M. Yuan, Z. Huang, P. K. Malakar, Y. Pan, Y. Zhao, and Z. Zhang, "Antimicrobial Resistomes in Food Chain Microbiomes," *Critical Reviews in Food Science and Nutrition* 64, no. 20 (2023): 6953–6974, <https://doi.org/10.1080/10408398.2023.2177607>.

[31] K. Al-Amery, M. Elhariri, A. Elsayed, et al., "Vancomycin-Resistant *Staphylococcus aureus* Isolated From Camel Meat and Slaughterhouse Workers in Egypt," *Antimicrobial Resistance and Infection Control* 8, no. 1 (2019): 129, <https://doi.org/10.1186/s13756-019-0585-4>.

[32] D. P. Kateete, F. Bwanga, J. Seni, et al., "CA-MRSA and HA-MRSA Coexist in Community and Hospital Settings in Uganda," *Antimicrobial Resistance and Infection Control* 8 (2019): 94–99, <https://doi.org/10.1186/S13756-019-0551-1>.

[33] A. Hassoun, P. K. Linden, and B. Friedman, "Incidence, Prevalence, and Management of MRSA Bacteremia Across Patient Populations-A Review of Recent Developments in MRSA Management and Treatment," *Critical Care* 21 (2017): 211–217, <https://doi.org/10.1186/s13054-017-1801-3>.

[34] S. Y. Mun, W. Lee, S.-Y. Lee, J. Y. Chang, and H. C. Chang, "Pediococcus Inopinatus With a Well-Developed CRISPR-Cas System Dominates in Long-Term Fermented Kimchi, Mukeunji," *Food Microbiology* 117 (2024): 104385, <https://doi.org/10.1016/j.fm.2023.104385>.

[35] M. L. Fernández Márquez, M. J. Grande Burgos, M. C. López Aguayo, R. Pérez Pulido, A. Gálvez, and R. Lucas, "Characterization of Biocide-Tolerant Bacteria Isolated From Cheese and Dairy Small-Medium Enterprises," *Food Microbiology* 62 (2017): 77–81, <https://doi.org/10.1016/j.fm.2016.10.008>.

[36] R. Gadea, M. Á. Fernández Fuentes, R. Pérez Pulido, A. Gálvez, and E. Ortega, "Effects of Exposure to Quaternary-Ammonium-Based Biocides on Antimicrobial Susceptibility and Tolerance to Physical Stresses in Bacteria From Organic Foods," *Food Microbiology* 63 (2017): 58–71, <https://doi.org/10.1016/j.fm.2016.10.037>.

[37] J. L. Romero, M. J. Grande Burgos, R. Pérez-Pulido, A. Gálvez, and R. Lucas, "Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated From Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds," *Frontiers in Microbiology* 8 (2017): 1650, <https://doi.org/10.3389/fmicb.2017.01650>.

[38] A. Salamandane, G. Cahango, B. A. Muetanene, M. Malfeito-Ferreira, and L. Brito, "Multidrug Resistance in Enterococci Isolated From Cheese and Capable of Producing Benzalkonium Chloride-Resistant Biofilms," *Biology* 12, no. 10 (2023): 1353, <https://doi.org/10.3390/biology12101353>.

[39] A. Salamandane, J. Correia, B. A. Muetanene, M. dos Santos, M. Malfeito-Ferreira, and L. Brito, "Methicillin Resistance of Food-Borne Biofilm-Forming Staphylococci," *Applied Sciences* 13 (2023): 7725, <https://doi.org/10.3390/app13137725>.

[40] F. M. Carvalho, A. Azevedo, M. M. Ferreira, F. J. M. Mergulhão, and L. C. Gomes, "Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds," *Biology* 11, no. 8 (2022): 1126, <https://doi.org/10.3390/biology11081126>.

[41] M. d. C. Casado Muñoz, N. Benomar, L. L. Lerma, A. Gálvez, H. Abriouel, and H. Abriouel, "Antibiotic Resistance of Lactobacillus Pentosus and Leuconostoc Pseudomesenteroides Isolated From Naturally-Fermented Aloreña Table Olives Throughout Fermentation Process," *International Journal of Food Microbiology* 172 (2014): 110–118, <https://doi.org/10.1016/j.ijfoodmicro.2013.11.025>.

[42] L. Pan, X. Hu, and X. Wang, "Assessment of Antibiotic Resistance of Lactic Acid Bacteria in Chinese Fermented Foods," *Food Control* 22, no. 8 (2011): 1316–1321, <https://doi.org/10.1016/j.foodcont.2011.02.006>.

[43] H. Guo, L. Pan, L. Li, et al., "Characterization of Antibiotic Resistance Genes From Lactobacillus Isolated From Traditional Dairy Products," *Journal of Food Science* 82, no. 3 (2017): 724–730, <https://doi.org/10.1111/1750-3841.13645>.

[44] G. Basbülbülbül, M. Özteber, and H. H. Biyik, "Antibiotic Resistance in Lactic Acid Bacteria Isolated From Fermented Dairy Products and Boza," *Journal of Microbiology, Biotechnology and Food Sciences* 04 (2015): 513–517, <https://doi.org/10.15414/jmbfs.2015.4.6.513-517>.

[45] Y. Li, L. Li, S. Kromann, M. Chen, L. Shi, and H. Meng, "Antibiotic Resistance of *Lactobacillus* spp. and *Streptococcus thermophilus* Isolated From Chinese Fermented Milk Products," *Foodborne Pathogens and Disease* 16, no. 3 (2019): 221–228, <https://doi.org/10.1089/fpd.2018.2516>.

[46] Y. Zheng, Y. Lu, J. Wang, L. Yang, C. Pan, and Y. Huang, "Probiotic Properties of Lactobacillus Strains Isolated From Tibetan Kefir Grains," *PLoS One* 8, no. 7 (2013): e69868, <https://doi.org/10.1371/journal.pone.0069868>.

[47] N. Zhou, J. X. Zhang, M. T. Fan, J. Wang, G. Guo, and X. Y. Wei, "Antibiotic Resistance of Lactic Acid Bacteria Isolated From Chinese Yogurts," *Journal of Dairy Science* 95, no. 9 (2012): 4775–4783, <https://doi.org/10.3168/jds.2011-5271>.

[48] K. Wang, H. Zhang, J. Feng, et al., "Antibiotic Resistance of Lactic Acid Bacteria Isolated From Dairy Products in Tianjin, China," *Journal of Agriculture and Food Research* 1 (2019): 100006, <https://doi.org/10.1016/j.jafr.2019.100006>.

[49] H. Guo, W. Zhang, L. Y. Kwok, and B. Menghe, "In Vitro Evaluation of Antibiotic Resistance of *Lactobacillus bulgaricus* Strains Isolated From Traditional Dairy Products," *Czech Journal of Food Sciences* 37, no. 1 (2019): 36–43, <https://doi.org/10.17221/136/2018-CJFS>.

[50] J. Zycka-Krzesinska, J. Boguslawska, T. Aleksandrak-Piekarczyk, J. Jopek, and J. K. Bardowski, "Identification and Characterization of Tetracycline Resistance in *Lactococcus lactis* Isolated From Polish Raw Milk and Fermented Artisanal Products," *International Journal of Food Microbiology* 211 (2015): 134–141, <https://doi.org/10.1016/j.ijfoodmicro.2015.07.009>.

[51] R. Comunian, E. Daga, I. Dupré, et al., "Susceptibility to Tetracycline and Erythromycin of *Lactobacillus paracasei* Strains Isolated From Traditional Italian Fermented Foods," *International Journal of Food Microbiology* 138, no. 1–2 (2010): 151–156, <https://doi.org/10.1016/j.ijfoodmicro.2009.11.018>.

[52] U. Zarzecka, W. Chajęcka-Wierzchowska, and A. Zadernowska, "Microorganisms From Starter and Protective Cultures—Occurrence of Antibiotic Resistance and Conjugal Transfer of Tet Genes in Vitro and during Food Fermentation," *LWT-Food Science & Technology* 153 (2022): 112490, <https://doi.org/10.1016/j.lwt.2021.112490>.

[53] F. L. Xu, Y. C. Guo, H. X. Wang, et al., "PFGE Genotyping and Antibiotic Resistance of Lactobacillus Distributed Strains in the Fermented Dairy Products," *Annals of Microbiology* 62, no. 1 (2012): 255–262, <https://doi.org/10.1007/s13213-011-0254-1>.

[54] S. H. Mariam, "A Sampling Survey of Enterococci Within Pasteurized, Fermented Dairy Products and Their Virulence and Antibiotic Resistance Properties," *PLoS One* 16, no. 7 (2021): e02543900–e254415, <https://doi.org/10.1371/journal.pone.0254390>.

[55] E. Anisimova and D. Yarullina, "Characterization of Erythromycin and Tetracycline Resistance in *Lactobacillus fermentum* Strains," *International Journal of Microbiology* 2018 (2018): 1–9, <https://doi.org/10.1155/2018/3912326>.

[56] M. Samtiya, K. R. Matthews, T. Dhewa, and A. K. Puniya, "Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies," *Foods* 11, no. 19 (2022): 2966, <https://doi.org/10.3390/foods11192966>.

[57] C. Verraes, S. Van Boxstael, E. Van Meervenne, et al., "Antimicrobial Resistance in the Food Chain: A Review," *International Journal of Environmental Research and Public Health* 10, no. 7 (2013): 2643–2669, <https://doi.org/10.3390/ijerph10072643>.

[58] European Food Safety Authority Efsa, H. Budka, S. Buncic, et al., "Foodborne Antimicrobial Resistance as a Biological Hazard-Scientific Opinion of the Panel on Biological Hazards," *EFSA Journal* 6, no. 8 (2008): 765, <https://doi.org/10.2903/j.efsa.2008.765>.

[59] G. Rychen, G. Aquilina, V. Bampidis, et al., "Guidance on the Characterisation of Microorganisms Used as Feed Additives

or as Production Organisms," *EFSA journal. European Food Safety Authority* 16, no. 3 (2018): e05206, <https://doi.org/10.2903/J.EFSA.2018.5206>.

[60] C. C. G. Silva, S. C. Ribeiro, and B. Bottari, "Editorial: Microbial Communities and Microbiomes in Dairy Products," *Frontiers in Microbiology* 14 (2023): 1265035, <https://doi.org/10.3389/fmicb.2023.1265035>.

[61] T. V. Kochetkova, I. P. Grabarnik, A. A. Klyukina, et al., "The Bacterial Microbiota of Artisanal Cheeses From the Northern Caucasus," *Fermentation* 9, no. 8 (2023): 719, <https://doi.org/10.3390/fermentation9080719>.

[62] S. A. Siddiqui, Z. Erol, J. Rugji, et al., "An Overview of Fermentation in the Food Industry-Looking Back From a New Perspective," *Bioresour Bioprocess* 10, no. 1 (2023): 85, <https://doi.org/10.1186/s40643-023-00702-y>.

[63] M. Gatti, B. Bottari, C. Lazzi, E. Neviani, and G. Mucchetti, "Invited Review: Microbial Evolution in Raw-Milk, Long-Ripened Cheeses Produced Using Undefined Natural Whey Starters," *Journal of Dairy Science* 97, no. 2 (2014): 573–591, <https://doi.org/10.3168/jds.2013-7187>.

[64] G. Oikonomou, M. F. Addis, C. Chassard, et al., "Milk Microbiota: What Are We Exactly Talking About?" *Frontiers in Microbiology* 11 (2020): 60, <https://doi.org/10.3389/fmicb.2020.00060>.

[65] S. Costard, L. Espejo, H. Groenendaal, and F. J. Zagmutt, "Outbreak-Related Disease Burden Associated With Consumption of Unpasteurized Cow's Milk and Cheese, United States, 2009–2014," *Emerging Infectious Diseases* 23, no. 6 (2017): 957–964, <https://doi.org/10.3201/eid2306.151603>.

[66] T. Asfaw, D. Genetu, D. Shenkute, et al., "Pathogenic Bacteria and Their Antibiotic Resistance Patterns in Milk, Yoghurt and Milk Contact Surfaces in Debre Berhan Town, Ethiopia," *Infection and Drug Resistance* 16 (2023): 4297–4309, <https://doi.org/10.2147/IDR.S418793>.

[67] H. Hanson, Y. Whitfield, C. Lee, et al., "Listeria Monocytogenes Associated With Pasteurized Chocolate Milk, Ontario, Canada," *Emerging Infectious Diseases* 25, no. 3 (2019): 581–584, <https://doi.org/10.3201/eid2503.180742>.

[68] C. Manyi-Loh, S. Mamphweli, E. Meyer, and A. Okoh, "Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications," *Molecules* 23, no. 4 (2018): 795, <https://doi.org/10.3390/molecules23040795>.

[69] J. Qian, Z. Wu, Y. Zhu, and C. Liu, "One Health: A Holistic Approach for Food Safety in Livestock," *Science in One Health* 1 (2022): 100015, <https://doi.org/10.1016/j.soh.2023.100015>.

[70] J. Liu, Y. Zhu, M. Jay-Russell, D. G. Lemay, and D. A. Mills, "Reservoirs of Antimicrobial Resistance Genes in Retail Raw Milk," *Microbiome* 8, no. 1 (2020): 99, <https://doi.org/10.1186/s40168-020-00861-6>.

[71] H. I. Shuval, "Effects of Wastewater Irrigation of Pastures on the Health of Farm Animals and Humans," *Revue Scientifique et Technique de l'OIE* 10, no. 3 (1991): 847–866, <https://doi.org/10.20506/rst.10.3.564>.

[72] G. Jalloul, I. Keniar, A. Tehrani, and C. Boyadjian, "Antibiotics Contaminated Irrigation Water: An Overview on Its Impact on Edible Crops and Visible Light Active Titania as Potential Photocatalysts for Irrigation Water Treatment," *Frontiers of Environmental Science* 9 (2021): <https://doi.org/10.3389/fenvs.2021.767963>.

[73] S. Akhter, M. A. Bhat, A. Hashem, et al., "Profiling of Antibiotic Residues in Soil and Vegetables Irrigated Using Pharmaceutical-Contaminated Water in the Delhi Stretch of the Yamuna River, India," *Water* 15, no. 23 (2023): 4197, <https://doi.org/10.3390/w15234197>.

[74] T. Lima, S. Domingues, and G. J. Da Silva, "Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events," *Veterinary Sciences* 7, no. 3 (2020): 110, <https://doi.org/10.3390/vetsci7030110>.

[75] M. Ruuskanen, J. Muurinen, A. Meierjohan, et al., "Fertilizing With Animal Manure Disseminates Antibiotic Resistance Genes to the Farm Environment," *Journal of Environmental Quality* 45, no. 2 (2016): 488–493, <https://doi.org/10.2134/jeq2015.05.0250>.

[76] H. Araújo-Rodrigues, F. K. Tavares, M. T. P. G. dos Santos, N. Alvarenga, and M. M. Pintado, "A Review on Microbiological and Technological Aspects of Serpa PDO Cheese: An Ovine Raw Milk Cheese," *International Dairy Journal* 100 (2020): 104561, <https://doi.org/10.1016/j.idairyj.2019.104561>.

[77] A. Possas, O. M. Bonilla-Luque, and A. Valero, "From Cheese-Making to Consumption: Exploring the Microbial Safety of Cheeses Through Predictive Microbiology Models," *Foods* 10, no. 2 (2021): 355, <https://doi.org/10.3390/foods10020355>.

[78] A. R. Khattab, H. A. Guirguis, S. M. Tawfik, and M. A. Farag, "Cheese Ripening: A Review on Modern Technologies Towards Flavor Enhancement, Process Acceleration and Improved Quality Assessment," *Trends in Food Science & Technology* 88 (2019): 343–360, <https://doi.org/10.1016/j.tifs.2019.03.009>.

[79] M. Kourta, M. Mataragas, P. Skandamis, and E. H. Drosinos, "Prevalence and Sources of Cheese Contamination With Pathogens at Farm and Processing Levels," *Food Control* 21, no. 6 (2010): 805–815, <https://doi.org/10.1016/j.foodcont.2009.11.015>.

[80] U. Tiwari, D. Walsh, L. Rivas, K. Jordan, and G. Duffy, "Modelling the Interaction of Storage Temperature, PH, and Water Activity on the Growth Behaviour of Listeria Monocytogenes in Raw and Pasteurised Semi-Soft Rind Washed Milk Cheese During Storage Following Ripening," *Food Control* 42 (2014): 248–256, <https://doi.org/10.1016/j.foodcont.2014.02.005>.

[81] K. Jordan, K. Hunt, A. Lourenco, and V. Pennone, "Listeria Monocytogenes in the Food Processing Environment," *Current Clinical Microbiology Reports* 5, no. 2 (2018): 106–119, <https://doi.org/10.1007/s40588-018-0090-1>.

[82] F. R. L. Rolim, O. C. Freitas Neto, M. E. G. Oliveira, C. J. B. Oliveira, and R. C. R. E. Queiroga, "Cheeses as Food Matrixes for Probiotics: In Vitro and in Vivo Tests," *Trends in Food Science & Technology* 100 (2020): 138–154, <https://doi.org/10.1016/j.tifs.2020.04.008>.

[83] M. Nuñez, J. Calzada, and A. Olmo, "High Pressure Processing of Cheese: Lights, Shadows and Prospects," *International Dairy Journal* 100 (2020): 104558, <https://doi.org/10.1016/j.idairyj.2019.104558>.

[84] P. Neopane, H. P. Nepal, R. Shrestha, O. Uehara, and Y. Abiko, "In Vitro Biofilm Formation by *Staphylococcus aureus* Isolated From Wounds of Hospital-Admitted Patients and Their Association With Antimicrobial Resistance," *International Journal of General Medicine* 11 (2018): 25–32, <https://doi.org/10.2147/IJGM.S153268>.

[85] S. Gowrishankar, N. Duncun Mosioma, and S. Karutha Pandian, "Coral-Associated Bacteria as a Promising Antibiofilm Agent Against Methicillin-Resistant and-Susceptible *Staphylococcus aureus* Biofilms," *Evidence-Based*

Complementary and Alternative Medicine 2012 (2012): 1–16, <https://doi.org/10.1155/2012/862374>.

[86] L. Karygianni, Z. Ren, H. Koo, and T. Thurnheer, “Biofilm Matrixome: Extracellular Components in Structured Microbial Communities,” *Trends in Microbiology* 28, no. 8 (2020): 668–681, <https://doi.org/10.1016/j.tim.2020.03.016>.

[87] M. Sharan, D. Vijay, P. Dhaka, J. S. Bedi, and J. P. S. Gill, “Biofilms as a Microbial Hazard in the Food Industry: A Scoping Review,” *Journal of Applied Microbiology* 133, no. 4 (2022): 2210–2234, <https://doi.org/10.1111/jam.15766>.

[88] S. Singh, S. K. Singh, I. Chowdhury, and R. Singh, “Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents,” *The Open Microbiology Journal* 11, no. 1 (2017): 53–62, <https://doi.org/10.2174/1874285801711010053>.

[89] X. Bai, C. H. Nakatsu, and A. K. Bhunia, “Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety,” *Foods* 10, no. 9 (2021): 2117, <https://doi.org/10.3390/foods10092117>.

[90] S. Marchand, J. De Block, V. De Jonghe, A. Coorevits, M. Heyndrickx, and L. Herman, “Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety,” *Comprehensive Reviews in Food Science and Food Safety* 11, no. 2 (2012): 133–147, <https://doi.org/10.1111/j.1541-4337.2011.00183.x>.

[91] F. A. Sadiq, M. Burmølle, M. Heyndrickx, et al., “Community-Wide Changes Reflecting Bacterial Interspecific Interactions in Multispecies Biofilms,” *Critical Reviews in Microbiology* 47, no. 3 (2021): 338–358, <https://doi.org/10.1080/1040841X.2021.1887079>.

[92] S. Flint, N. M. Jamaludin, B. Somerton, J. Palmer, and J. Brooks, “The Effect of Milk Composition on the Development of Biofilms,” in *Biofilms in the Dairy Industry* (Wiley, 2015), 36–48.

[93] E. A. Alexa Oniciuc, C. J. Walsh, L. M. Coughlan, et al., “Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed Through Functional Metagenomics,” *mSystems* 5, no. 1 (2020): <https://doi.org/10.1128/msystems.00723-19>.

[94] M. Weber, B. Göpfert, S. von Wezyk, M. Savin-Hoffmeyer, and A. Lipski, “Correlation Between Bacterial Cell Density and Abundance of Antibiotic Resistance on Milking Machine Surfaces Assessed by Cultivation and Direct QPCR Methods,” *Microbial Ecology* 86, no. 3 (2023): 1676–1685, <https://doi.org/10.1007/s00248-023-02225-7>.

[95] J. Yao, J. Gao, J. Guo, et al., “Characterization of Bacteria and Antibiotic Resistance in Commercially Produced Cheeses Sold in China,” *Journal of Food Protection* 85, no. 3 (2022): 484–493, <https://doi.org/10.4315/JFP-21-198>.

[96] M. H. Okura and J. M. Marin, “Survey of Minas Frescal Cheese From Southwest Minas Gerais for Virulence Factors and Antimicrobial Resistance in *Escherichia Coli* Isolates,” *Ciência Rural* 44, no. 8 (2014): 1506–1511, <https://doi.org/10.1590/0103-8478cr20131237>.

[97] M. X. Rodrigues, N. C. C. Silva, J. H. Trevilin, et al., “Molecular Characterization and Antibiotic Resistance of *Staphylococcus* spp. Isolated From Cheese Processing Plants,” *Journal of Dairy Science* 100, no. 7 (2017): 5167–5175, <https://doi.org/10.3168/jds.2016-12477>.

[98] H. Endale, M. Mathewos, and D. Abdeta, “Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review,” *Infection and Drug Resistance* 16 (2023): 7515–7545, <https://doi.org/10.2147/IDR.S428837>.

[99] P. Gilbert and A. J. McBain, “Potential Impact of Increased Use of Biocides in Consumer Products on Prevalence of Antibiotic Resistance,” *Clinical Microbiology Reviews* 16, no. 2 (2003): 189–208, <https://doi.org/10.1128/CMR.16.2.189-208.2003>.

[100] B. Chen, J. Han, H. Dai, and P. Jia, “Biocide-Tolerance and Antibiotic-Resistance in Community Environments and Risk of Direct Transfers to Humans: Unintended Consequences of Community-Wide Surface Disinfecting During COVID-19?” *Environmental Pollution* 283 (2021): 117074, <https://doi.org/10.1016/j.envpol.2021.117074>.

[101] P.-E. Douarre, Y. Sévellec, P. Le Grandois, C. Soumet, A. Bridier, and S. Roussel, “FepR as a Central Genetic Target in the Adaptation to Quaternary Ammonium Compounds and Cross-Resistance to Ciprofloxacin in *Listeria monocytogenes*,” *Frontiers in Microbiology* 13 (2022): 864576, <https://doi.org/10.3389/fmicb.2022.864576>.

[102] M. E. Wand and J. M. Sutton, “Efflux-Mediated Tolerance to Cationic Biocides, a Cause for Concern?” *Microbiology (New York)* 168, no. 11 (2022): <https://doi.org/10.1099/mic.0.001263>.

[103] A. Amsalu, S. A. Sapula, M. De Barros Lopes, et al., “Efflux Pump-Driven Antibiotic and Biocide Cross-Resistance in *Pseudomonas aeruginosa* Isolated From Different Ecological Niches: A Case Study in the Development of Multidrug Resistance in Environmental Hotspots,” *Microorganisms* 8, no. 11 (2020): 1647, <https://doi.org/10.3390/microorganisms8111647>.

[104] O.-K. Koo, E. M. Martin, R. Story, D. Lindsay, S. C. Ricke, and P. G. Crandall, “Comparison of Cleaning Fabrics for Bacterial Removal From Food-Contact Surfaces,” *Food Control* 30, no. 1 (2013): 292–297, <https://doi.org/10.1016/j.foodcont.2012.06.008>.

[105] P. K. Jha, H. Dallagi, E. Richard, M. Deleplace, T. Benezech, and C. Faille, “Does the Vertical vs Horizontal Positioning of Surfaces Affect Either Biofilm Formation on Different Materials or Their Resistance to Detachment?” *Food Control* 133 (2022): 108646, <https://doi.org/10.1016/j.foodcont.2021.108646>.

[106] J. Owusu-Kwarteng, F. Akabanda, D. Agyei, and L. Jespersen, “Microbial Safety of Milk Production and Fermented Dairy Products in Africa,” *Microorganisms* 8, no. 5 (2020): 752, <https://doi.org/10.3390/microorganisms8050752>.

[107] C. L. Brown, A. Maile-Moskowitz, A. J. Lopatkin, et al., “Selection and Horizontal Gene Transfer Underlie Microdiversity-Level Heterogeneity in Resistance Gene Fate during Wastewater Treatment,” *Nature Communications* 15, no. 1 (2024): 5412, <https://doi.org/10.1038/s41467-024-49742-8>.

[108] A. J. Lopatkin, S. Huang, R. P. Smith, et al., “Antibiotics as a Selective Driver for Conjugation Dynamics,” *Nature Microbiology* 1, no. 6 (2016): 16044, <https://doi.org/10.1038/nmicrobiol.2016.44>.

[109] K. S. Bonham, B. E. Wolfe, and R. J. Dutton, “Extensive Horizontal Gene Transfer in Cheese-Associated Bacteria,” *eLife* 6 (2017): e22144, <https://doi.org/10.7554/eLife.22144>.

[110] A. Babic, M. B. Berkmen, C. A. Lee, and A. D. Grossman, “Efficient Gene Transfer in Bacterial Cell Chains,” *mBio* 2 (2011): <https://doi.org/10.1128/mBio.00027-11>.

[111] N. Li, H. Yu, H. Liu, et al., “Horizontal Transfer of VanA Between Probiotic *Enterococcus faecium* and *Enterococcus faecalis* in Fermented Soybean Meal and in Digestive Tract of Growing Pigs,” *Journal of Animal Science and Biotechnology*

10, no. 1 (2019): 36, <https://doi.org/10.1186/s40104-019-0341-x>.

[112] T. O. Olanrewaju, M. McCarron, J. S. G. Dooley, and J. Arnscheidt, "Transfer of Antibiotic Resistance Genes between *Enterococcus faecalis* Strains in Filter Feeding Zooplankton *Daphnia Magna* and *Daphnia Pulex*," *Science of the Total Environment* 659 (2019): 1168–1175, <https://doi.org/10.1016/j.scitotenv.2018.12.314>.

[113] M. O. Ahmed and K. E. Baptiste, "Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health," *Microbial Drug Resistance* 24, no. 5 (2018): 590–606, <https://doi.org/10.1089/mdr.2017.0147>.

[114] L. Yuan, H. Dai, G. He, Z. Yang, and X. Jiao, "Invited Review: Current Perspectives for Analyzing the Dairy Biofilms by Integrated Multiomics," *Journal of Dairy Science* 106, no. 12 (2023): 8181–8192, <https://doi.org/10.3168/jds.2023-23306>.

[115] H. Hasegawa, E. Suzuki, and S. Maeda, "Horizontal Plasmid Transfer by Transformation in *Escherichia coli*: Environmental Factors and Possible Mechanisms," *Frontiers in Microbiology* 9 (2018): 2365, <https://doi.org/10.3389/fmicb.2018.02365>.

[116] S. A. Ranveer, V. Dasriya, M. F. Ahmad, et al., "Positive and Negative Aspects of Bacteriophages and Their Immense Role in the Food Chain," *NPJ Science of Food* 8 (2024): 1, <https://doi.org/10.1038/s41538-023-00245-8>.

[117] Y. N. Chiang, J. R. Penadés, and J. Chen, "Genetic Transduction by Phages and Chromosomal Islands: The New and Noncanonical," *PLoS Pathogens* 15, no. 8 (2019): e1007878, <https://doi.org/10.1371/journal.ppat.1007878>.

[118] L. Fernández, S. Escobedo, D. Gutiérrez, et al., "Bacteriophages in the Dairy Environment: From Enemies to Allies," *Antibiotics* 6, no. 4 (2017): 27, <https://doi.org/10.3390/antibiotics6040027>.

[119] K. Dubin and E. G. Pamer, "Enterococci and Their Interactions With the Intestinal Microbiome," *Microbiology Spectrum* 5, no. 6 (2014): <https://doi.org/10.1128/microbiolspec.BAD-0014-2016>.

[120] M. C. Coelho, F. X. Malcata, and C. C. G. Silva, "Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions," *Foods* 11, no. 15 (2022): 2276, <https://doi.org/10.3390/FOODS11152276>.

[121] O. Ben Braïk and S. Smaoui, "Enterococci: Between Emerging Pathogens and Potential Probiotics," *BioMed Research International* 2019 (2019): 5938210, <https://doi.org/10.1155/2019/5938210>.

[122] T. J. Eaton and M. J. Gasson, "Molecular Screening of *Enterococcus* Virulence Determinants and Potential for Genetic Exchange Between Food and Medical Isolates," *Applied and Environmental Microbiology* 67, no. 4 (2001): 1628–1635, <https://doi.org/10.1128/AEM.67.4.1628-1635.2001>.

[123] N. Shankar, A. S. Baghdayan, and M. S. Gilmore, "Modulation of Virulence Within a Pathogenicity Island in Vancomycin-Resistant *Enterococcus faecalis*," *Nature* 417, no. 6890 (2002): 746–750, <https://doi.org/10.1038/nature00802>.

[124] A. O. Ajayi, O. J. Akinjogunla, A. T. Odeyemi, and A. O. Owolabi, "Role of Plasmids in Antibiotic Resistance in Clinical Infections and Implications for Epidemiological Surveillance: A Review," *All Life* 17, no. 1 (2024): <https://doi.org/10.1080/26895293.2024.2350414>.

[125] A. Aguilar-Galvez, R. Dubois-Dauphin, J. Destain, D. Campos, P. Thonart, and L. Molina, "Les Entérocoques: Avantages et Inconvénients En (Synthèse Bibliographique)," *Biotechnology, Agronomy, Society and Environment* 16 (2012): 67–76.

[126] A. R. Marinho, P. D. Martins, E. M. Ditmer, et al., "Biofilm Formation on Polystyrene under Different Temperatures by Antibiotic Resistant *Enterococcus faecalis* and *Enterococcus faecium* Isolated From Food," *Brazilian Journal of Microbiology* 44, no. 2 (2013): 423–426, <https://doi.org/10.1590/S1517-83822013005000045>.

[127] M. Gołaś-Prądzyńska, M. Łuszczynska, and J. G. Rola, "Dairy Products: A Potential Source of Multidrug-Resistant *Enterococcus faecalis* and *Enterococcus faecium* Strains," *Foods* 11, no. 24 (2022): 4116, <https://doi.org/10.3390/foods11244116>.

[128] J. Výrostková, I. Regecová, E. Dudriková, et al., "Antimicrobial Resistance of *Enterococcus* sp. Isolated From Sheep and Goat Cheeses," *Foods* 10, no. 8 (2021): 1844, <https://doi.org/10.3390/foods10081844>.

[129] A. Terzić-Vidović, K. Veljović, N. Popović, M. Tolinački, and N. Golić, "Enterococci From Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns," *Foods* 10, no. 11 (2021): 2753, <https://doi.org/10.3390/FOODS10112753>.

[130] M. Dapkevicius, B. Sgardioli, S. P. A. Câmara, P. Poeta, F. X. Malcata, and F. X. Malcata, "Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles," *Foods* 10, no. 4 (2021): 821, <https://doi.org/10.3390/FOODS10040821>.

[131] L. L. Pimentel, T. Semedo, R. Tenreiro, M. B. Crespo, M. E. Pintado, and F. X. Malcata, "Assessment of Safety of Enterococci Isolated Throughout Traditional Terrincho Cheese Making: Virulence Factors and Antibiotic Susceptibility," *Journal of Food Protection* 70, no. 9 (2007): 2161–2167, <https://doi.org/10.4315/0362-028X-70.9.2161>.

[132] Y. Cetinkaya, P. Falk, and C. G. Mayhall, "Vancomycin-Resistant Enterococci," *Clinical Microbiology Reviews* 13, no. 4 (2000): 686–707, <https://doi.org/10.1128/CMR.13.4.686-707.2000>.

[133] N. Buetti, N. Wassilew, V. Rion, et al., "Emergence of Vancomycin-Resistant Enterococci in Switzerland: A Nation-Wide Survey," *Antimicrobial Resistance and Infection Control* 8, no. 1 (2019): 16, <https://doi.org/10.1186/s13756-019-0466-x>.

[134] Y. Tian, H. Yu, and Z. Wang, "Distribution of Acquired Antibiotic Resistance Genes Among *Enterococcus* spp. Isolated From a Hospital in Baotou, China," *BMC Research Notes* 12, no. 1 (2019): 27, <https://doi.org/10.1186/s13104-019-4064-z>.

[135] Z. Saribas, F. Tunçkanat, and A. Pinar, "Prevalence of Erm Genes Encoding Macrolide-Lincosamide-Streptogramin (MLS) Resistance Among Clinical Isolates of *Staphylococcus aureus* in a Turkish University Hospital," *Clinical Microbiology and Infection* 12, no. 8 (2006): 797–799, <https://doi.org/10.1111/j.1469-0961.2006.01486.x>.

[136] A. P. Magiorakos, A. Srinivasan, R. B. Carey, et al., "Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance," *Clinical Microbiology and Infection* 18, no. 3 (2012): 268–281, <https://doi.org/10.1111/j.1469-0961.2011.03570.x>.