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Fermented foods, particularly fermented dairy products, ofer signifcant health benefts but also present serious concerns.
Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and
dissemination of antibiotic resistance genes (ARGs). Tis study aims to examine the potential risks associated with fermented
foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to
storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm
management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene
practices (GHP) in cheese production.Te fndings of this review highlight that ARGs found in LAB are similar to those observed
in hygiene indicator bacteria like E. coli and pathogens like S. aureus. Te deliberate use of antibiotics in dairy farms and the
incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese
factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk
can enhance ARG transfer. Te interaction between the raw milk microbiota and other environmental microbiotas, facilitated by
cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding
these bacterial and ARG interactions is crucial to ensure food safety for consumers.
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1. Introduction

Te overutilization of antibiotics in dairy cattle on livestock
farms may lead to the emergence of antibiotic-resistant
pathogens within the food supply chain, particularly
within raw milk processing factories [1, 2]. Te dairy food
supply chain facilitates the transmission of antibiotic-
resistant bacteria (ARB) between animals and humans,

particularly through the use of raw milk in fermented
products like traditional raw milk cheese [3–5]. In recent
years, the approach of foodborne pathogens has expanded
beyond on virulence factors to encompass an investigation
into the presence of antibiotic resistance genes (ARGs),
carried by both pathogens and commensal bacteria found in
food [2, 6]. Te potential of foodborne bacteria to harbor
antibiotic resistance determinants raises concerns about
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their role in spreading resistance [5, 7]. Tis is especially
worrisome if these bacteria become opportunistic patho-
gens, even more when resistance genes are transferred to
pathogenic bacteria, thereby undermining the efectiveness
of antibiotics for treating common infections [8].

Fermented foods are widely acknowledged as rich
sources of functional compounds that play a crucial role in
nutrition and health. Such foods ofer various benefts, such
as reducing the risk of heart disease and promoting di-
gestion, immunity, and weight loss [9, 10]. Several studies
have focused on identifying bioactive peptides and microbial
metabolites in fermented foods, strengthening the connec-
tion between these foods and their benefcial health efects
[11–13]. Ebner et al. [14] reported the identifcation of about
236 multifunctional peptide sequences like VYPFPGPIPN,
KIEKFQSEEQQQT, VLNENLLR, and NLHLPLP in kefr.
Hati, Sakure, and Mandal [15] report peptides with amino
acid sequences IPP and VPP with antihypertensive and
antioxidative activity in Lactobacillus helveticus–fermented
honey-based milk. Peptides sequences with ACE inhibitory
activity in the order Lys-Pro-Ala-Gly-Asp-Phe>Lys-Ala-Ala-
Leu-Ser-Gly-Met>Lys-Lys-Ala-Ala-Met-Ala-Met>Leu-Asp-
His-Val-Pro-Gly-Gly-Ala-Arg have been produced in milk
fermented by Lactobacillus helveticus and Lactobacillus casei
[16]. Fermented dairy products ofer an ideal delivery system
for introducing probiotic bacteria that are benefcial to the
human gut microbiome [10, 12].

Cheese is one of the most important fermented dairy
products produced and consumed by humans. Cheese
production involves the use of lactic acid bacteria (LAB) as
starter cultures, such as Lactobacillus, Streptococcus, En-
terococcus, Bifdobacterium, and Leuconostoc, during the
fermentation andmaturation of cheese [5, 9]. Enterococcus is
a genus of bacteria commonly found in cheese, which is
crucial in maturation. Moreover, Enterococcus contributes
signifcantly for a unique favor, aroma, and texture in many
artisanal cheeses [1, 4, 17–21]. Even though Enterococcus
plays a vital role in cheesemaking, despite the contribution
of Enterococcus faecium and Enterococcus faecalis to the
fermentation and ripening process, the virulence factors
directly associated with and the fact they act as reservoirs for
antimicrobial resistance genes (ARGs) rise debates about its
presence in scientist arena [4, 22–24].

Tis review aims to analyze the potential risk of trans-
mission of ARGs in the cheese production chain. Tis ap-
proach is particularly relevant due to the importance of
cheeses in the human diet and the growing contemporary
interest in fermented food consumption. Te focus will be
on Enterococcus strains involved in the fermentation of
artisanal cheeses.

2. Food Supply and Transmission of Antibiotic-
Resistant Bacteria

Chemical compounds, specifcally antibiotics, are com-
monly used to promote growth farming, improve feed ef-
fciency, enhance reproduction, and reduce illness and death
in livestock [25]. However, excessive antibiotic use in food
production can contribute to the spread of ARB by creating

environments that favor the survival of resistant strains [26].
In this context, the food chain is particularly vulnerable to
this problem, as bacteria can be exposed to high levels of
antibiotics, especially in meat and dairy production [27].

Te use of antibiotics in food production also contrib-
utes to the selection of resistance determinants and the
exchange of ARGs via horizontal gene transfer (HGT)
[28, 29]. Gene encoding resistance to β-lactams antibiotics,
resistance to tetracycline, and aminoglycoside are the most
common ARGs found in Escherichia coli and Salmonella
recovered from livestock and poultry products [30]. Several
studies have highlighted that the rise in methicillin-resistant
Staphylococcus aureus (MRSA), is intricately linked to the
overuse of antibiotics within the livestock industry. It was
proven that overuse of antibiotics causes a therapy in-
efciency, due to the alterations in penicillin binding caused
by the PBP2′ protein encoded by the mecA gene present in
MRSA [30–33].

However, the promotion of ARB in food is not limited
solely to the administration of antibiotics in livestock.
Handling and processing also play crucial roles in this issue,
presenting critical points to be considered [34]. During
processing, there are signifcant risks of bacterial trans-
mission, both by handlers and the equipment used. Anti-
biotic resistance has been identifed in various tools used in
the production and processing food, especially in meat and
dairy-based products [35–37]. Usually, these microorgan-
isms are present on the food equipment in the form of
bioflm—a complex and highly structured aggregation of
sessile bacteria, formed on biotic or abiotic surfaces, which
are resistant to high concentrations of biocides [38–40]. Te
contamination of food with ARB and antibiotic ARGs
during production, handling and processing, distribution,
and sale can signifcantly contribute to the spread of anti-
microbial resistance throughout the food chain.

Lactobacillus and Enterococcus are the fermenting
bacterial genus reporting high antibiotic resistance
profle and ARGs. Lactobacillus pentosus and Leuconostoc
pseudomesenteroides isolated from natural fermented
table olives were reported resistance to streptomycin
(83%–100%), vancomycin and teicoplanin (70%–100%),
trimethoprim (76%), trimethoprim/sulfamethoxazole
(71%–100%), and cefuroxime (44%) (Table 1) [41]. In
addition, gene encoding multidrug resistance Efux
Pump (NorA), penicillin resistance (MepA), and fuo-
roquinolone resistance gene (MdeA) were found in
Lactobacillus pentosus and Leuconostoc pseudomesenter-
oides (Table 1). Lactobacillus isolated from fermented
foods showed resistance to tetracycline, erythromycin,
ciprofoxacin, chloramphenicol, kanamycin, ampicillin,
and clindamycin (Table 1) [42], and tetW, tetM, tetS
encoding to tetracycline resistance, gene ermB encoding
to erythromycin resistance were founded (Table 1).

In Lactobacillus isolated from fermented dairy products,
the most frequent antibiotic resistance profle is related to
tetracycline, erythromycin, ciprofoxacin, chloramphenicol,
kanamycin, ampicillin, clindamycin (Table 1), genes
encoding resistance to tetracycline (tetM), erythromycin
(ermB), and gene encoding an aminoglycoside-modifying
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enzyme (aph (3″)-III) were the most frequent gene found in
Lactobacillus isolated from fermented dairy products.

3. Pathways of Antimicrobial Resistance in the
Cheese Factory Environment

Food chains provide an excellent vehicle for spreading
ARB, spoilage, and pathogenic bacteria from farm to fork.
ARB-contaminating products on farms can survive on
raw and undercooked produce, potentially afecting
consumer health [56, 57]. Animal-based foods like meat,
eggs, and milk are a major source of ARGs in the food
chain [56, 58].

Te use of microorganisms in fermentation can in-
advertently introduce ARGs into the food chain. Te Eu-
ropean Food Safety Authority (EFSA) addressed this
concern in 2012 by issuing guidelines to mitigate the risk in
starter cultures [59]. However, unlike industrial fermented
foods, spontaneous fermentations like kefr, kombucha, and
artisanal cheeses rely on naturally occurring microorgan-
isms from their raw materials [5, 60–62]. Raw milk’s ex-
ceptional nutritional composition provides a favorable
environment for the growth of a wide range of microor-
ganisms, from benefcial to pathogenic [63].

Microbiota of milk encompass both microorganisms
associated with the mammary gland and teat, as well as
contaminants introduced by diseases like mastitis [5, 64].
Despite the health benefts of using raw milk in fermented
food for humans [4–6], zoonotic pathogens (including
Campylobacter spp., Shiga toxin–producing Escherichia coli,
Staphylococcus aureus, Listeria monocytogenes, and Salmo-
nella enterica) have been well documented as the most
common foodborne pathogens resulting from the con-
tamination of raw milk [63, 65–67]. Te management and
control of these zoonotic pathogens in livestock often in-
volve the routine use of antibiotics to preserve the health of
animals in livestock farming [68]. However, this procedure
can increase the likelihood of the emergence and spread of
ARGs [68, 69].

Metagenomic analysis showed a signifcantly higher
number of ARGs in raw milk compared to pasteurized milk
[70]. In an experimental study, Liu et al. demonstrated the
conjugative transfer of the blaCMY-2 gene, associated with
ceftazidime resistance, from E. coli in raw milk to other
bacterial species [70].

A largely overlooked source of ARG transmission is
related to common agricultural practices, including irriga-
tion, grazing, silage production, feed manufacturing, and the
use of agricultural wastewater or animal manure (Figure 1)
[5, 68].Tis convergence of agricultural activities and animal
waste may serve as a critical point in the dissemination of
ARGs, posing a signifcant risk to the health of both humans
and animals [71].

Irrigation plays a crucial role in agricultural production,
facilitating the healthy growth of crops [72]. However, ir-
rigation water contaminated with antibiotic residues, either
from agricultural practices or environmental pollution, can
contribute to the spread of these compounds and their ARGs
[68, 72]. Furthermore, the frequent use of antibiotics in

livestock farming and intensive agriculture contributes to
the presence of these compounds in water, creating a con-
ducive environment for the development and spread of
resistant bacteria [73].

Silage, feed production, and animal waste management
can also contribute to the spread of ARG [74]. Slurry and
wastewater from livestock operations can contaminate the
environment (soils and water) and crops with antibiotic
residues and ARB, potentially afecting human health
(Figure 1) [73–75]. Addressing this issue demands a col-
laborative efort involving efective regulations, sustainable
agricultural practices, and increased awareness among all
stakeholders in the food chain.

3.1. Infuence of Food Processing and Preservation Techniques.
Bacterial survival and growth in food are infuenced by
processing techniques, preservation methods, and adher-
ence to food safety practices [57]. Unlike industrial dairy
processing, traditional PDO cheese dairies often avoid using
additives and preservatives [1, 5]. Te quality of Protected
PDO cheeses is guaranteed by using high-quality raw ma-
terials, adhering to strict hygiene standards, and harnessing
the benefts of natural fermentation [1, 21, 76].

During cheese production, milk proteins coagulate into
curds upon the addition of rennet or other coagulants,
followed by the draining of whey. Te subsequent shaping
and curing processes defne whether the cheese will be
semicured or fully cured, infuencing its texture from soft to
hard and afecting overall frmness [77]. During this process,
cheese factory workers can introduce ARB poor hygiene
practices, such as not washing hands or wearing contami-
nated clothing (Figure 1), also, inadequately cleaned
equipment can spread ARB between production batches.

During the curing/maturation process, cheeses are
kept under controlled conditions for varying periods,
allowing for the development of distinctive biochemical,
physicochemical, and organoleptic characteristics
[77, 78]. Te cheese is treated regularly to prevent mold
growth, ensuring its quality and preservation. Improper
handling of cheese or poor sanitation can result in the
transfer of resistant bacteria from contaminated surfaces
or workers to the cheese. Te spread of foodborne
pathogens and ARB in cheese by direct or/and cross-
contamination during processing has been documented
by several studies [79–81].

Organic acids, such as lactic, acetic, butyric, and sorbic
acid, contribute to the low pH in certain cheeses, creating an
environment that limits the survival of pathogenic bacteria
[82, 83]. Food safety measures like refrigeration, pasteuri-
zation, and bio-protective cultures create additional barriers
to microbial growth in cheese [82, 83].

Despite these measures, numerous cases of cheese-
related illness outbreaks have been reported in Europe
and other parts of the world in recent decades [77, 79]. Soft
cheeses crafted from raw milk have commonly served as
a vehicle for foodborne pathogens, although pasteurized-
milk cheeses have also been implicated in outbreaks as
carriers of the causative agents [77].
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3.2. Infuence of Bioflms. Bioflms are complex and highly
structured aggregations of sessile bacteria, which are formed
on biotic or abiotic surfaces, embedded in a self-produced
extracellular matrix of exopolysaccharides, proteins, and
DNA [40, 84–86]. Bioflms represent an important source of
hazard in food industry and cause a signifcant health and
economic impact [40, 87, 88]. Bioflms are implicated in
recurrent contamination and outbreaks within food pro-
duction environments [89]. Unlike antibiotic resistance,
which involves genetic changes, persistence is a phenotypic
adaptation that poses unique challenges for detection and
control.

Several studies have demonstrated that microorgan-
isms within bioflms exhibit signifcantly higher re-
sistance to antimicrobial agents, often requiring 10 to
1000 times the concentration needed to eradicate
equivalent planktonic populations [38, 39, 87, 88]. Te
high resistance observed in bioflms is attributed to
quorum sensing, a microbial communication mechanism
that enables coordinated responses to environmental
challenges. Quorum sensing allows bioflm-dwelling
microorganisms to conserve resources, reduce meta-
bolic activity, and activate protective mechanisms against
antimicrobial agents [84, 85].

Te presence of bioflms in cheese factory environments
poses a signifcant risk, as they can harbor a diverse mi-
crobial community, including benefcial LAB, spoilage or-
ganisms, and potentially pathogenic microorganisms
[38, 40, 90]. Within bioflms, interactions between diverse
microbial species facilitate the exchange of genetic material,
enhancing the bioflm’s evolutionary adaptability and
resilience [38, 40, 91].

Te microbial diversity of milk used for cheese pro-
duction make cheese factory environments highly suscep-
tible to bioflm formation increasing the risk of
contamination of processed cheese by ARB, highlighting the
importance of stringent preventive measures [5, 38, 87]. Te
protein- and fat-rich nature of the milk and dairy by-
products used in cheese production creates an ideal envi-
ronment for bacterial growth and bioflm formation, while
the combination of high humidity levels and moderate
temperatures commonly present in cheese factories further
favors microbial proliferation [92]. Materials widely used in
the process, such as stainless steel and plastic, are susceptible
to bioflm formation, especially when their surfaces are
damaged or scratched [38, 39].

Several metagenomic studies have revealed a high and
diverse presence of genetic material related to antimicrobial
resistance in cheese factories, attesting to the fact that dairies
act as reservoirs for ARGs [5, 70, 93, 94]. Tese studies
emphasize the importance of understanding andmonitoring
the spread of these genes in the context of food safety.

Yao et al. [95] evaluated the antibiotic resistance profle
of Lactococcus, Lactobacillus, and Streptococcus isolated in
cheese and found high resistance to sulfonamides (100%),
aminoglycosides (91.7%), and tetracycline (31%). In En-
terococcus recovered from raw milk cheese, high resistance
was found to the antibiotic’s vancomycin (87.5%), eryth-
romycin (75%), tetracycline (50%), and penicillin (37.5%)
[38]. Multidrug-resistant (MDR) diarrheagenic E. coli was
recovered in Minas raw milk cheese in Minas Gerais [96]. A
study of antibiotic resistance Staphylococcus species in
a dairy factory showed multidrug resistance in 52% of the
isolates, with resistance to penicillin being themost frequent,

Antibiotics used in 
livestock and for humans

Use of untreated manure
and/or slurry as organic
fertilizer in pastures and
forages

Contamination during cheese molding

Contamination during
cheese handling

Contamination during milking
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Figure 1: Pathways of bacterial contamination and antimicrobial resistance transmission in the cheese factory environment. Tis is an
original fgure conceptualized and created by the authors.
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followed by cefoxitin, oxacillin, gentamicin, ciprofoxacin,
and chloramphenicol [97]. Isolates recovered from cheese
samples, packer equipment, cheese mold, and food handlers
showed a similar antibiotic profle and were found to carry
the mecA gene [97]. Te fndings reported in this study
suggest that antibiotic resistance and highly virulent strains
from diferent sources can be found in the dairy processing
environment, causing signifcant concern for researchers,
producers, and consumers.

3.3. Inadequate Sanitation Practices and Use of Disinfectants
or Biocides. Te overuse of disinfectants and biocides
without proper protocols can facilitate the spread of anti-
biotic resistance through HGT [98]. Excessive or in-
appropriate use of certain biocides can also induce cross-
resistance, where bacteria become resistant to both disin-
fectants and antibiotics [99, 100]. Some disinfectants, such as
quaternary ammonium compounds or chlorine-based
agents, can trigger genetic mutations or select for re-
sistancemechanisms similar to those used against antibiotics
[101]. For instance, efux pumps, proteins that expel toxic
compounds, can be activated by biocides and pump out
antibiotics, reducing their efectiveness [102, 103]. Biocide-
tolerant bacteria are more likely to exhibit multidrug re-
sistance, posing a signifcant threat to food safety and public
health [100].

When cleaning and sanitation procedures fail to com-
pletely remove bacterial contaminants from surfaces like
conveyor belts, cutting tools, storage tanks, and pipelines,
bacteria can survive and form bioflms [104, 105]. Bioflms
provide additional protection against cleaning agents and
disinfectants, making them persistent sources of contami-
nation that can release bacteria into subsequent production
batches.

Repeated exposure to sublethal doses of disinfectants can
select for increasingly resistant strains, making the bacterial
communities in the production environment more difcult
to control [98]. Tis ongoing cycle of contamination and
resistance can afect multiple product lines within the same
facility, spreading ARB across diferent cheese varieties or
dairy products [92, 106]. If resistant bacteria enter the fnal
product, they can reach consumers, leading to foodborne
illness outbreaks that are difcult to treat due to the bac-
teria’s resistance to antibiotics.

3.4. Horizontal Gene Transfer. HGT refers to the transfer of
genetic material, including ARGs, between organisms across
diferent species or lineages [107]. Te transfer of ARGs
between bacteria can lead to the emergence of MDR strains,
posing a serious threat to public health and food safety [108].
HGT is particularly concerning in cheese factories due to the
high microbial diversity of cheese matrix that facility dif-
ferent mechanisms of HGT, namely, conjugation, trans-
formation, and transduction [109].

In cheese factories, conjugation, a process involving the
direct transfer of genetic material between two bacterial cells
in physical contact, is the most important mechanism
[109, 110]. Conjugation is the primary mechanism of HGT

in Enterococcus species, signifcantly contributing to the
spread of ARGs within Enterococcus communities in cheese-
making environments [111, 112]. An example of this is
vancomycin resistance in E. faecium and E. faecalis species,
mediated by a conjugative plasmid [113].

Given the high concentration and diversity of bacteria in
cheese, especially during fermentation, conjugation facili-
tates the rapid dissemination of genetic information [109].
In traditional cheeses made from raw milk, where the mi-
crobial load is high, the chances of conjugation occurring are
increased, allowing antibiotic-resistant strains to spread
rapidly across batches of cheese. Te formation of bioflms
on equipment surfaces in cheese-making factories also
provides an ideal environment for conjugation [114].

Transformation, the uptake of free DNA from the en-
vironment by bacterial cells, is another mechanism by which
Enterococcus species can acquire new genes in cheese-
making facilities. Tere, bacteria take up naked DNA
from their surroundings, which can come from dead bac-
terial cells or be released into the environment during
processing [115]. Tis process can occur when bacterial cells
are lysed during pasteurization, fermentation, or cleaning
operations, releasing their DNA into the milk or cheese curd
[116]. If ARGs or other virulence factors are present in the
environment, Enterococcus species in the cheese-making
process may acquire them through transformation. How-
ever, transformation is less frequent than conjugation and
requires the bacteria to be in a “competent” state, capable of
absorbing and integrating foreign DNA [57].

Transduction is another mechanism of gene transfer that
occurs in Enterococcus faecium and Enterococcus faecalis. In
transduction, bacteriophages (viruses that infect bacteria)
transfer DNA between the bacteria [117]. Although trans-
duction is less common than conjugation in Enterococcus
species, it can still play a role in spreading ARGs or other
virulence factors [111, 112, 117]. In cheese-making factories,
where bacteriophages may be present in the milk or in-
troduced through environmental contamination, trans-
duction could contribute to the spread of unwanted traits in
the microbial community [118]. Although phage contami-
nation is generally less common than bacterial contami-
nation, phages can persist in dairy environments and pose
a risk in cheese production if they facilitate gene transfer
between Enterococcus populations [118].

4. Risks Associated With Enterococcus faecium
and Enterococcus faecalis

4.1. Benefts of E. faecium and E. faecalis in Cheese.
E. faecium and E. faecalis are LAB that play a vital role in the
fermentation and ripening of various traditional and non-
traditional cheeses. Tough they are often associated with
gut microbiota and probiotics [119], their contribution to
cheesemaking has garnered attention due to the benefcial
traits they bring to the production process [120, 121]. Tese
bacteria are commonly found in raw milk and are added
intentionally as starter or adjunct cultures in some cheese
varieties [38, 120]. Teir ability to thrive in extreme con-
ditions, such as high salt concentrations, low pH levels, and
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elevated temperatures, makes them particularly well suited
for cheese fermentation.

One of the key benefts of E. faecium and E. faecalis in
cheesemaking is their contribution to the development of
favor. Tese bacteria produce enzymes that break down
proteins, fats, and carbohydrates in the cheese matrix,
resulting in the release of a wide array of volatile compounds
that give cheeses their distinctive taste and aroma. In par-
ticular, the breakdown of casein by Enterococcus strains
enhances the development of complex favors in both hard
and soft cheeses. In traditional Mediterranean cheeses like
Pecorino, Feta, and various artisanal goat and sheep cheeses,
these strains are naturally present and signifcantly infuence
the tangy, sharp, or savory characteristics of the fnal
product. Moreover, these Enterococcus species contribute to
texture improvement, particularly in soft cheeses like Ricotta
or Mozzarella. Teir proteolytic activity helps in breaking
down milk proteins, leading to a smooth and creamy
consistency. In nontraditional or experimental cheeses,
where novel microbial combinations are explored,
E. faecium and E. faecalis have been used to enrich both
favor and texture, ofering new possibilities for cheese-
makers looking to create innovative products.

4.2. Risks of E. faecium and E. faecalis in Cheese. Despite the
importance of E. faecium and E. faecalis as starter and
probiotic strains, they also present specifc risks that both
cheesemakers and consumers should be aware of, especially
in the production and consumption of traditional and
nontraditional cheeses. One of the primary risks associated
with E. faecium and E. faecalis in cheese production is the
potential to spread of ARGs, particularly vancomycin-
resistant Enterococcus (VRE) [38]. Te raw sheep’s milk
cheese production chain harbors a potential concern,
E. faecalis and E. faecium, two seemingly harmless bacteria,
can serve as silent carriers of ARGs within this industry.
Understanding their role in this context is critical to en-
suring the safety and sustainability of raw milk cheese
production. Several factors in the production process create
conditions that facilitate the spread of ARGs. Te absence of
pasteurization, a key step in eliminating harmful bacteria,
allows E. faecalis and E. faecium to thrive. Additionally, the
use of antibiotics in animal husbandry can spill over into the
milk, further increasing the risk of resistant bacteria being
present. Furthermore, the diverse microbial communities
present during cheesemaking can facilitate the horizontal
transfer of resistance genes between diferent bacterial
species.

Enterococci are notorious for their ability to harbor
diverse mobile genetic elements within their genomes [121].
Tese elements, such as plasmids, transposons, prophages,
and insertion sequences, can be readily integrated and
utilized by enterococci [118, 122].Tis facilitates the efcient
transfer of acquired determinants, including virulence fac-
tors and ARGs, among strains of the same species, or even
between species within the same genus or beyond. Notably,
many of these highly transmissible plasmids are known to
carry genes associated with enterococcal virulence and

antibiotic resistance [121]. Virulence traits and ARGs in
enterococci were previously reported to be caused by gene
horizontal or vertical transfer mechanisms and by the ability
to receive genetic material [121, 123]. Experimental studies
have confrmed the horizontal transfer of ARGs, such as
ermB, from an enterococcal strain of animal origin to a strain
of human origin [121]. Tis mechanism, facilitated by the
transfer of genetic elements such as plasmids or transposons,
plays a more signifcant role in the dissemination of anti-
microbial resistance than the clonal spread of ARB
[121, 124, 125]. A signifcant concern is the potential for
trans-conjugation, a process through which enterococci can
acquire virulence and antibiotic resistance determinants.
Tis poses a serious threat to the safety of enterococcal
strains that currently lack these harmful genes, as they could
acquire them from both human and non-human reservoirs
[121]. Tis raises signifcant concerns regarding the safety of
using such strains as probiotics.

While the allure of raw sheep’s milk cheese is undeniable,
it is crucial to address the potential public health concerns
linked to antibiotic resistance. Understanding the roles of
E. faecalis and E. faecium, adopting responsible production
practices, and ensuring continuous monitoring are essential
steps to safeguard the safety and sustainability of this
cherished tradition. Tese measures protect both consumers
and the broader integrity of our food system. Notably,
E. faecalis and E. faecium have been associated with a high
potential for the horizontal transfer of ARGs, virulence
factors, and elements that promote bioflm formation on
various surfaces, including stainless steel, polyvinyl chloride,
and polystyrene [23, 24, 38, 40, 126].

Several studies have investigated the antibiotic resistance
profles of Enterococcus strains isolated from cheese
[1, 4, 23, 38, 126–131]. One such study focused on En-
terococcus strains recovered from raw ewe’s milk [38], re-
vealing signifcant resistance levels: 75% of isolates were
resistant to erythromycin, 50% to tetracycline, and 87.5% to
vancomycin. Additionally, all VRE isolates exhibited mul-
tidrug resistance and harbored the vanA gene [38]. Similar
results were found in Enterococci isolated from ewe’s and
goat’s milk cheeses, where E. faecium exhibited 100% re-
sistance to vancomycin, while E. faecalis demonstrated
85.7% resistance to vancomycin and 71.4% resistance to
erythromycin [128].

In Enterococcus species, vanA is one of the key genes
regulating and expressing vancomycin resistance. Tis gene,
along with other vancomycin resistance–related genes
(vanR, vanS, vanH, vanX, and vanZ), is located on the
transposon Tn1546, which is frequently associated with
plasmids in E. faecium [132]. Te expression of these genes
leads to the production of altered peptidoglycan precursors
ending in D-Ala–D-lactate instead of the typical D-
Ala–D-Ala structure [132, 133]. Because vanA is plasmid-
mediated, vancomycin resistance in E. faecium is likely the
result of HGT,making it transferable to other bacteria, either
within the same species or across diferent species. Similarly,
erythromycin resistance in Enterococcus can also spread via
HGT. Tis resistance is linked to the presence of erm genes
(ermA, ermB, and ermC), which encode erythromycin
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ribosome methylases [134]. Tese genes were initially
identifed on the Tn554 transposon in the chromosome of
Staphylococcus aureus [135].

Tetracycline resistance was detected in 75% of E. faecalis
and 25% of E. faecium isolates from Serra da Estrela PDO
cheese [38], as well as in 75% of E. faecalis and 25% of
E. faecium isolates from Azeitão and Nisa cheeses [1]. In
Serra da Estrela PDO cheese, all tetracycline-resistant
phenotypes were associated with the presence of the tetM
gene [38]. Tis gene, which is highly prevalent among En-
terococcus species, is primarily located on the bacterial
chromosome and is often linked to conjugative transposons
belonging to the Tn916/Tn1545 family [136].

4.3. Mitigation of the Risk. Te results from this study
highlight the signifcant risk posed by ARGs and ARB strains
in the dairy environment, especially in the context of En-
terococci species such as E. faecium and E. faecalis in cheese
production. Te fndings raise important concerns for re-
searchers, producers, and consumers alike regarding the
potential health implications of antibiotic resistance in the
food chain.

To mitigate these risks, several strategies to reduce an-
tibiotic resistance in cheese production focus on controlling
antibiotic use and ensuring safety throughout the pro-
duction process should be implemented. Limiting antibiotic
use on dairy farms to only essential treatments, as prescribed
by veterinarians, and avoiding antibiotics critical for human
health reduce the risk of developing ARB. Regularly testing
milk for antibiotic residues before cheese production helps
identify and prevent contamination, ensuring that antibi-
otics do not reach consumers. Implementing strict hygiene
protocols in the milking, transport, and cheese production
areas as well as proper sanitation minimizes the spread of
bacteria, reducing opportunities for antibiotic-resistant
strains to multiply.

Te study also underscores the importance of un-
derstanding gene transfer mechanisms in Enterococci, par-
ticularly in cheese-making facilities. Gene transfer via
conjugation plays a dominant role in the spread of ARGs,
with transduction and transformation acting as supple-
mentary pathways. Tese processes are especially prevalent
in high-contact environments, such as bioflms on pro-
cessing equipment or in raw-milk cheeses. Research into
these mechanisms is crucial for developing strategies to
enhance the safety of both traditional and industrial cheese
varieties.

5. Conclusion

Te study highlights that ARGs and ARB in dairy processing
environments pose signifcant risks to food safety. Key
fndings indicate that Enterococci, particularly E. faecium
and E. faecalis, contribute to the spread of ARGs through
conjugation, transduction, and transformation, especially in
bioflms and raw-milk cheeses. To mitigate these risks, the
study recommends responsible practices such as regular
monitoring for ARB, strict hygiene and sanitation protocols,

cautious antibiotic use in dairy farming, and strategies to
prevent bioflm formation. Tese measures are essential to
ensure the safety and sustainability of cheese production,
safeguarding both consumer health and global food systems.
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and N. Golić, “Enterococci FromRaw-Milk Cheeses: Current
Knowledge on Safety, Technological, and Probiotic Con-
cerns,” Foods 10, no. 11 (2021): 2753, https://doi.org/
10.3390/FOODS10112753.

[130] M. Dapkevicius, B. Sgardioli, S. P. A. Câmara, P. Poeta,
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